First Lidar Campaign in the Industrial Sites of Volta Redonda-RJ and Lorena-SP, Brazil
Abstract
:1. Introduction
2. The Campaign Sites and Instrumentations
2.1. Campaign Sites—Paraíba Valley Region
2.2. Instruments
2.2.1. Lidar System
2.2.2. CETESB Air Quality Stations
2.2.3. CALIPSO Satellite
2.2.4. HYSPLIT Air-Mass Trajectories
3. Lidar Retrieval Methodology
4. Data Retrieval and Results
4.1. Air Quality Overview over Paraíba Valley
4.2. CALIPSO Satellite Retrieval
4.3. Volta Redonda and Lorena Campaigns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AOD | Aerosol Optical Depth |
a.g.l. | as ground level |
BG | Background |
CALIOP | Cloud-Aerosol Lidar with Orthogonal Polarization |
CALIPSO | Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations |
C. L. | Confidence limit |
CSN | Companhia Siderúgica Nacional |
FOV | Field of View |
FWHM | Full Width at Half Maximum |
GDAS | Global Data Assimilation System |
HYSPLIT | Hybrid Single-Particle Lagrangian Integrated Trajectory |
INPE | National Institute for Space Research |
IPEN | Instituto de Pesquisas Energéticas e Nucleares |
KFS | Klett–Fernald–Sasano |
LALINET | Latin America Lidar Network |
LR | Lidar ratio |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSP-LIDAR II | Municipality of São Paulo Lidar II |
Nd:YAG | Neodymium-Doped Yttrium Aluminium Garnet |
PDH | Presidente Dutra Highway or BR-116 |
PMT | Photomultiplier Tube |
RCS | Range Corrected Signal |
SP | São Paulo |
RJ | Rio de Janeiro |
UTC | Universal Time Coordinated |
VR | Volta Redonda |
References
- Isaksen, I.; Granier, C.; Myhre, G.; Berntsen, T.; Dalsøren, S.; Gauss, M.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; et al. Atmospheric composition change: Climate—Chemistry interactions. Atmos. Environ. 2009, 43, 5138–5192. [Google Scholar] [CrossRef]
- Laj, P.; Klausen, J.; Bilde, M.; Plaß-Duelmer, C.; Pappalardo, G.; Clerbaux, C.; Baltensperger, U.; Hjorth, J.; Simpson, D.; Reimann, S.; et al. Measuring atmospheric composition change. Atmos. Environ. 2009, 43, 5351–5414. [Google Scholar] [CrossRef]
- Salmond, J.; Sabel, C.E.; Vardoulakis, S. Towards the Integrated Study of Urban Climate, Air Pollution, and Public Health. Climate 2018, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Parrish, D.D.; Singh, H.B.; Molina, L.; Madronich, S. Air quality progress in North American megacities: A review. Atmos. Environ. 2011, 45, 7015–7025. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Lin, Y.; Wang, Q.; Fu, J.S.; Fu, Q.; Liu, T.; Deng, C. How to improve the air quality over megacities in China: Pollution characterization and source analysis in Shanghai before, during, and after the 2010 World Expo. Atmos. Chem. Phys. 2013, 13, 5927–5942. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, air quality and climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- de Fatima Andrade, M.; Kumar, P.; de Freitas, E.D.; Ynoue, R.Y.; Martins, J.; Martins, L.D.; Nogueira, T.; Perez-Martinez, P.; de Miranda, R.M.; Albuquerque, T.; et al. Air quality in the megacity of São Paulo: Evolution over the last 30 years and future perspectives. Atmos. Environ. 2017, 159, 66–82. [Google Scholar] [CrossRef] [Green Version]
- de Andrade, M.F.; de Miranda, R.M.; Fornaro, A.; Kerr, A.; Oyama, B.; de Andre, P.A.; Saldiva, P. Vehicle emissions and PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 2012, 5, 79–88. [Google Scholar] [CrossRef] [Green Version]
- de Miranda, R.M.; de Andrade, M.F.; Fornaro, A.; Astolfo, R.; de Andre, P.A.; Saldiva, P. Urban air pollution: A representative survey of PM2.5 mass concentrations in six Brazilian cities. Air Qual. Atmos. Health 2012, 5, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Martínez, P.; Miranda, R.; Andrade, M.; Kumar, P. Air quality and fossil fuel driven transportation in the Metropolitan Area of São Paulo. Transp. Res. Interdiscip. Perspect. 2020, 5, 100137. [Google Scholar] [CrossRef]
- de Almeida Azevedo, D.; Silveira Moreira, L.; Soares de Siqueira, D. Composition of extractable organic matter in aerosols from urban areas of Rio de Janeiro city, Brazil. Atmos. Environ. 1999, 33, 4987–5001. [Google Scholar] [CrossRef]
- Almeida, G.P.; Bittencourt, A.T.; Evangelista, M.S.; Vieira-Filho, M.S.; Fornaro, A. Characterization of aerosol chemical composition from urban pollution in Brazil and its possible impacts on the aerosol hygroscopicity and size distribution. Atmos. Environ. 2019, 202, 149–159. [Google Scholar] [CrossRef]
- Martins, L.D.; Andrade, M.F. Ozone Formation Potentials of Volatile Organic Compounds and Ozone Sensitivity to Their Emission in the Megacity of São Paulo, Brazil. Water Air Soil Pollut. 2008, 195, 201–213. [Google Scholar] [CrossRef]
- Nogueira, T.; de Souza, K.F.; Fornaro, A.; de Fatima Andrade, M.; de Carvalho, L.R.F. On-road emissions of carbonyls from vehicles powered by biofuel blends in traffic tunnels in the Metropolitan Area of Sao Paulo, Brazil. Atmos. Environ. 2015, 108, 88–97. [Google Scholar] [CrossRef]
- Souto-Oliveira, C.E.; Andrade, M.D.F.; Kumar, P.; Lopes, F.J.D.S.; Babinski, M.; Landulfo, E. Effect of vehicular traffic, remote sources and new particle formation on the activation properties of cloud condensation nuclei in the megacity of São Paulo, Brazil. Atmos. Chem. Phys. 2016, 16, 14635–14656. [Google Scholar] [CrossRef] [Green Version]
- Saldiva, P.H.N.; Lichtenfels, A.J.; Paiva, P.S.O.; Barone, I.; Martins, M.A.G.; Massad, E.; Pereira, J.C.R.; Xavier, V.P.; Singer, J.M.; Böhm, G.M. Association between air pollution and mortality due to respiratory diseases in children in São Paulo, Brazil: A preliminary report. Environ. Res. 1994, 65 2, 218–225. [Google Scholar] [CrossRef]
- Spinosa De Martinis, B.; Kado, N.Y.; de Carvalho, L.R.; Okamoto, R.A.; Gundel, L.A. Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutat. Res. Toxicol. Environ. Mutagen. 1999, 446, 83–94. [Google Scholar] [CrossRef]
- Cheng, M.H.; Chiu, H.F.; Yang, C.Y. Coarse Particulate Air Pollution Associated with Increased Risk of Hospital Admissions for Respiratory Diseases in a Tropical City, Kaohsiung, Taiwan. Int. J. Environ. Res. Public Health 2015, 12, 13053–13068. [Google Scholar] [CrossRef]
- Liu, P.; Wang, X.; Fan, J.; Xiao, W.; Wang, Y. Effects of Air Pollution on Hospital Emergency Room Visits for Respiratory Diseases: Urban-Suburban Differences in Eastern China. Int. J. Environ. Res. Public Health 2016, 13, 341. [Google Scholar] [CrossRef] [Green Version]
- Mannucci, P.M.; Franchini, M. Health Effects of Ambient Air Pollution in Developing Countries. Int. J. Environ. Res. Public Health 2017, 14, 1048. [Google Scholar] [CrossRef]
- Andrade, M.d.F.; Ynoue, R.Y.; Freitas, E.D.; Todesco, E.; Vara Vela, A.; Ibarra, S.; Martins, L.D.; Martins, J.A.; Carvalho, V.S.B. Air quality forecasting system for Southeastern Brazil. Front. Environ. Sci. 2015, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.R.; Longo, K.M.; Silva Dias, M.A.F.; Chatfield, R.; Silva Dias, P.; Artaxo, P.; Andreae, M.O.; Grell, G.; Rodrigues, L.F.; Fazenda, A.; et al. The Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS)—Part 1: Model description and evaluation. Atmos. Chem. Phys. 2009, 9, 2843–2861. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.R.; Panetta, J.; Longo, K.M.; Rodrigues, L.F.; Moreira, D.S.; Rosário, N.E.; Silva Dias, P.L.; Silva Dias, M.A.F.; Souza, E.P.; Freitas, E.D.; et al. The Brazilian developments on the Regional Atmospheric Modeling System (BRAMS 5.2): An integrated environmental model tuned for tropical areas. Geosci. Model Dev. 2017, 10, 189–222. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.R.; Longo, K.M.; Chatfield, R.; Latham, D.; Silva Dias, M.A.F.; Andreae, M.O.; Prins, E.; Santos, J.C.; Gielow, R.; Carvalho, J.A., Jr. Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos. Chem. Phys. 2007, 7, 3385–3398. [Google Scholar] [CrossRef] [Green Version]
- Abou Rafee, S.A.; Martins, L.D.; Kawashima, A.B.; Almeida, D.S.; Morais, M.V.B.; Souza, R.V.A.; Oliveira, M.B.L.; Souza, R.A.F.; Medeiros, A.S.S.; Urbina, V.; et al. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: A numerical study with the WRF-Chem model. Atmos. Chem. Phys. 2017, 17, 7977–7995. [Google Scholar] [CrossRef] [Green Version]
- de Almeida Albuquerque, T.T.; de Fátima Andrade, M.; Ynoue, R.Y.; Moreira, D.M.; Andreão, W.L.; dos Santos, F.S.; Nascimento, E.G.S. WRF-SMOKE-CMAQ modeling system for air quality evaluation in São Paulo megacity with a 2008 experimental campaign data. Environ. Sci. Pollut. Res. 2018, 25, 36555–36569. [Google Scholar] [CrossRef]
- Duarte, E.D.S.F.; Franke, P.; Lange, A.C.; Friese, E.; da Silva Lopes, F.J.; ao da Silva, J.J.; dos Reis, J.S.; Landulfo, E.; de Silva, C.M.S.; Elbern, H.; et al. Evaluation of atmospheric aerosols in the metropolitan area of São Paulo simulated by the regional EURAD-IM model on high-resolution. Atmos. Pollut. Res. 2021, 12, 451–469. [Google Scholar] [CrossRef]
- Weitkamp, C.; Walther, H. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2005. [Google Scholar]
- Landulfo, E.; Papayannis, A.; de Freitas, A.Z.; Vieira, N.D., Jr.; Souza, R.F.; Gonçalves, A.; Castanho, A.D.A.; Artaxo, P.; Sánchez-Ccoyllo, O.R.; Moreira, D.S.; et al. Tropospheric aerosol observations in São Paulo, Brazil using a compact lidar system. Int. J. Remote Sens. 2005, 26, 2797–2816. [Google Scholar] [CrossRef]
- Landulfo, E.; Matos, C.; Torres, A.; Sawamura, P.; Uehara, S. Air quality assessment using a multi-instrument approach and air quality indexing in an urban area. Atmos. Res. 2007, 85, 98–111. [Google Scholar] [CrossRef]
- Landulfo, E.; Lopes, F.J.; Mariano, G.L.; Torres, A.S.; de Jesus, W.C.; Nakaema, W.M.; Jorge, M.P.; Mariani, R. Study of the Properties of Aerosols and the Air Quality Index Using a Backscatter Lidar System and Aeronet Sunphotometer in the City of São Paulo, Brazil. J. Air Waste Manag. Assoc. 2010, 60, 386–392. [Google Scholar] [CrossRef] [Green Version]
- Lopes, F.J.S.; Moreira, G.A.; Rodrigues, P.F.; Guerrero-Rascado, J.L.; Andrade, M.F.; Landulfo, E. Lidar measurements of tropospheric aerosol and water vapor profiles during the winter season campaigns over the metropolitan area of São Paulo, Brazil. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing X; Singh, U.N., Pappalardo, G., Eds.; International Society for Optics and Photonics, SPIE: Amsterdam, The Netherlands, 2014; Volume 9246, pp. 99–112. [Google Scholar] [CrossRef]
- Lopes, F.J.S.; Luis Guerrero-Rascado, J.; Benavent-Oltra, J.A.; Román, R.; Moreira, G.; Marques, M.T.A.; da Silva, J.J.; Alados-Arboledas, L.; Artaxo, P.; Landulfo, E. Rehearsal for Assessment of atmospheric optical Properties during biomass burning Events and Long-range transportation episodes at Metropolitan Area of São Paulo-Brazil (RAPEL). EPJ Web Conf. 2018, 176, 08011. [Google Scholar] [CrossRef]
- Miranda, R.; Lopes, F.; Rosario, N.; Yamasoe, M.; Landulfo, E.; Andrade, M. The relationship between aerosol particles chemical composition and optical properties to identify the biomass burning contribution to fine particles concentration: A case study for São Paulo City, Brazil. Environ. Monit. Assess. 2016, 189, 6. [Google Scholar] [CrossRef]
- Bencherif, H.; Bègue, N.; Kirsch Pinheiro, D.; du Preez, D.J.; Cadet, J.M.; da Silva Lopes, F.J.; Shikwambana, L.; Landulfo, E.; Vescovini, T.; Labuschagne, C.; et al. Investigating the Long-Range Transport of Aerosol Plumes Following the Amazon Fires (August 2019): A Multi-Instrumental Approach from Ground-Based and Satellite Observations. Remote Sens. 2020, 12, 3846. [Google Scholar] [CrossRef]
- Larroza, E.G.; Nakaema, W.M.; Bourayou, R.; Hoareau, C.; Landulfo, E.; Keckhut, P. Towards an automatic lidar cirrus cloud retrieval for climate studies. Atmos. Meas. Tech. 2013, 6, 3197–3210. [Google Scholar] [CrossRef] [Green Version]
- Córdoba-Jabonero, C.; Lopes, F.J.; Landulfo, E.; Cuevas, E.; Ochoa, H.; Gil-Ojeda, M. Diversity on subtropical and polar cirrus clouds properties as derived from both ground-based lidars and CALIPSO/CALIOP measurements. Atmos. Res. 2017, 183, 151–165. [Google Scholar] [CrossRef]
- Lopes, F.J.S.; Silva, J.J.; Antuña Marrero, J.C.; Taha, G.; Landulfo, E. Synergetic Aerosol Layer Observation After the 2015 Calbuco Volcanic Eruption Event. Remote Sens. 2019, 11, 195. [Google Scholar] [CrossRef] [Green Version]
- de Arruda Moreira, G.; da Silva Lopes, F.J.; Guerrero-Rascado, J.L.; da Silva, J.J.; Arleques Gomes, A.; Landulfo, E.; Alados-Arboledas, L. Analyzing the atmospheric boundary layer using high-order moments obtained from multiwavelength lidar data: Impact of wavelength choice. Atmos. Meas. Tech. 2019, 12, 4261–4276. [Google Scholar] [CrossRef] [Green Version]
- de Arruda Moreira, G.; da Silva Andrade, I.; Cacheffo, A.; da Silva Lopes, F.J.; Calzavara Yoshida, A.; Gomes, A.A.; da Silva, J.J.; Landulfo, E. Influence of a Biomass-Burning Event in PM2.5 Concentration and Air Quality: A Case Study in the Metropolitan Area of São Paulo. Sensors 2021, 21, 425. [Google Scholar] [CrossRef]
- Gioda, A.; Sales, J.A.; Cavalcanti, P.M.S.; Maia, M.F.; Maia, L.F.P.G.; Neto, F.R.A. Evaluation of air quality in Volta Redonda, the main metallurgical industrial city in Brazi. J. Braz. Chem. Soc. 2004, 15, 856–864. [Google Scholar] [CrossRef] [Green Version]
- Rocha, N.L.T.; de Souza Guimarães, C. Air quality study and the steel activity in Volta Redonda city. Cad. UniFOA 2017, 12, 25–36. [Google Scholar] [CrossRef]
- Antuna-Marrero, J.C.; Landulfo, E.; Estevan, R.; Barja, B.; Robock, A.; Wolfram, E.; Ristori, P.; Clemesha, B.; Zaratti, F.; Forno, R.; et al. LALINET: The First Latin American—Born Regional Atmospheric Observational Network. Bull. Am. Meteorol. Soc. 2017, 98, 1255–1275. [Google Scholar] [CrossRef]
- Guerrero-Rascado, J.L.; Landulfo, E.; Antuña, J.C.; de Melo Jorge Barbosa, H.; Barja, B.; Bastidas, Á.E.; Bedoya, A.E.; da Costa, R.F.; Estevan, R.; Forno, R.; et al. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation. J. Atmos. Sol.-Terr. Phys. 2016, 138-139, 112–120. [Google Scholar] [CrossRef]
- da Silva Lopes, F.J.; Held, G.; Nakaema, W.M.; Rodrigues, P.F.; Bassan, J.M.; Landulfo, E. Initial analysis from a lidar observation campaign of sugar cane fires in the central and western portion of the São Paulo State, Brazil. In Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VII; Singh, U.N., Pappalardo, G., Eds.; International Society for Optics and Photonics, SPIE: Amsterdam, The Netherlands, 2011; Volume 8182, pp. 233–242. [Google Scholar]
- CETESB. Relatório de qualidade do ar no Estado de São Paulo 2020; Technical Report; Companhia Ambiental do Estado de São Paulo: São Paulo, Brazil, 2020. [Google Scholar]
- Winker, D.M.; Pelon, J.; Coakley, J.A.; Ackerman, S.A.; Charlson, R.J.; Colarco, P.R.; Flamant, P.; Fu, Q.; Hoff, R.M.; Kittaka, C.; et al. The CALIPSO Mission: A Global 3D View of Aerosols and Clouds. Bull. Am. Meteorol. Soc. 2010, 91, 1211–1230. [Google Scholar] [CrossRef]
- Hunt, W.H.; Winker, D.M.; Vaughan, M.A.; Powell, K.A.; Lucker, P.L.; Weimer, C. CALIPSO Lidar Description and Performance Assessment. J. Atmos. Ocean. Technol. 2009, 26, 1214–1228. [Google Scholar] [CrossRef]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Omar, A.H.; Winker, D.M.; Vaughan, M.A.; Hu, Y.; Trepte, C.R.; Ferrare, R.A.; Lee, K.P.; Hostetler, C.A.; Kittaka, C.; Rogers, R.R.; et al. The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm. J. Atmos. Ocean. Technol. 2009, 26, 1994–2014. [Google Scholar] [CrossRef]
- Kim, M.H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C.; et al. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [Green Version]
- Young, S.A.; Vaughan, M.A.; Garnier, A.; Tackett, J.L.; Lambeth, J.D.; Powell, K.A. Extinction and optical depth retrievals for CALIPSO’s Version 4 data release. Atmos. Meas. Tech. 2018, 11, 5701–5727. [Google Scholar] [CrossRef] [Green Version]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Rolph, G.; Stein, A.; Stunder, B. Real-time Environmental Applications and Display sYstem: READY. Environ. Model. Softw. 2017, 95, 210–228. [Google Scholar] [CrossRef]
- Bodhaine, B.A.; Wood, N.B.; Dutton, E.G.; Slusser, J.R. On Rayleigh Optical Depth Calculations. J. Atmos. Ocean. Technol. 1999, 16, 1854–1861. [Google Scholar] [CrossRef]
- Bucholtz, A. Rayleigh-scattering calculations for the terrestrial atmosphere. Appl. Optics. 1995, 34, 2765–2773. [Google Scholar] [CrossRef] [PubMed]
- Bates, D. Rayleigh scattering by air. Planet. Space Sci. 1984, 32, 785–790. [Google Scholar] [CrossRef]
- Anderson, T.L.; Charlson, R.J.; Winker, D.M.; Ogren, J.A.; Holmén, K. Mesoscale Variations of Tropospheric Aerosols. J. Atmos. Sci. 2003, 60, 119–136. [Google Scholar] [CrossRef]
- Kovacs, T. Comparing MODIS and AERONET aerosol optical depth at varying separation distances to assess ground-based validation strategies for spaceborne lidar. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Pappalardo, G.; Wandinger, U.; Mona, L.; Hiebsch, A.; Mattis, I.; Amodeo, A.; Ansmann, A.; Seifert, P.; Linné, H.; Apituley, A.; et al. EARLINET correlative measurements for CALIPSO: First intercomparison results. J. Geophys. Res. Atmos. 2010. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.H.; Omar, A.H.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Kim, S.W. Quantifying the low bias of CALIPSO’s column aerosol optical depth due to undetected aerosol layers. J. Geophys. Res. Atmos. 2017, 122, 1098–1113. [Google Scholar] [CrossRef]
- Klett, J.D. Lidar inversion with variable backscatter/extinction ratios. Appl. Opt. 1985, 24, 1638–1643. [Google Scholar] [CrossRef]
- Fernald, F.G. Analysis of atmospheric lidar observations: Some comments. Appl. Opt. 1984, 23, 652–653. [Google Scholar] [CrossRef]
- Sasano, Y.; Nakane, H. Significance of the extinction/backscatter ratio and the boundary value term in the solution for the two-component lidar equation. Appl. Opt. 1984, 23, 11_1–13. [Google Scholar] [CrossRef]
- Lopes, F.J.S.; Landulfo, E.; Vaughan, M.A. Evaluating CALIPSO’s 532 nm lidar ratio selection algorithm using AERONET sun photometers in Brazil. Atmos. Meas. Tech. 2013, 6, 3281–3299. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, F.J.d.S.; Carvalho, S.A.; Catalani, F.; da Silva, J.J.; de Almeida, R.M.; Ribeiro, F.d.J.; Fellows, C.E.; Landulfo, E.; Menegatti, C.R.; Peixoto, C.J.T. First Lidar Campaign in the Industrial Sites of Volta Redonda-RJ and Lorena-SP, Brazil. Remote Sens. 2022, 14, 1675. https://doi.org/10.3390/rs14071675
Lopes FJdS, Carvalho SA, Catalani F, da Silva JJ, de Almeida RM, Ribeiro FdJ, Fellows CE, Landulfo E, Menegatti CR, Peixoto CJT. First Lidar Campaign in the Industrial Sites of Volta Redonda-RJ and Lorena-SP, Brazil. Remote Sensing. 2022; 14(7):1675. https://doi.org/10.3390/rs14071675
Chicago/Turabian StyleLopes, Fábio Juliano da Silva, Silvânia A. Carvalho, Fernando Catalani, Jonatan João da Silva, Rogério M. de Almeida, Fábio de Jesus Ribeiro, Carlos Eduardo Fellows, Eduardo Landulfo, Carlos Renato Menegatti, and Carlos José Todero Peixoto. 2022. "First Lidar Campaign in the Industrial Sites of Volta Redonda-RJ and Lorena-SP, Brazil" Remote Sensing 14, no. 7: 1675. https://doi.org/10.3390/rs14071675
APA StyleLopes, F. J. d. S., Carvalho, S. A., Catalani, F., da Silva, J. J., de Almeida, R. M., Ribeiro, F. d. J., Fellows, C. E., Landulfo, E., Menegatti, C. R., & Peixoto, C. J. T. (2022). First Lidar Campaign in the Industrial Sites of Volta Redonda-RJ and Lorena-SP, Brazil. Remote Sensing, 14(7), 1675. https://doi.org/10.3390/rs14071675