A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM10, PM2.5 and Visibility Data
2.2. Analysis Sites
2.3. Calculation of Mass Extinction Efficiency (Qe)
2.4. Mann–Kendall Test and Sen’s Slope
3. Results
3.1. Visibility and PM Mass Concentration Trend
3.2. Long-Term Trend in Mass Extinction Efficiency (Qe)
4. Discussion
4.1. Qe Trend by Fixed PM
4.2. Qe,2.5 Data Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Province | City | Station Number | Address | Longitude | Latitude |
---|---|---|---|---|---|
Metropolitan area | Seoul | 108 | 52, Songwol-gil, Jongno-gu, Seoul | 126.966°N | 37.571°E |
111,121 | 15, Deoksugung-gil, Jung-gu, Seoul | 126.975°N | 37.564°E | ||
Suwon | 119 | 276, Gwonseon-ro, Gwonseon-gu, Suwon-si, Gyeonggi-do | 126.983°N | 37.258°E | |
131,111 | 68, Sinpung-ro 23beon-gil, Paldal-gu, Suwon-si, Gyeonggi-do | 127.011°N | 37.284°E | ||
Gangwon-do | Chuncheon | 101 | 12, Chungyeol-ro 91beon-gil, Chuncheon-si, Gangwon-do | 127.736°N | 37.903°E |
132,112 | 135, Jungang-ro, Chuncheon-si, Gangwon-do | 127.721°N | 37.876°E | ||
Wonju | 114 | 159, Dangu-ro, Wonju-si, Gangwon-do | 127.947°N | 37.338°E | |
632,122 | 171, Dangu-ro, Wonju-si, Gangwon-do | 127.948°N | 37.337°E | ||
Gyeongsang-do | Pohang | 138 | 70, Songdo-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do | 129.380°N | 36.032°E |
437,114 | 138, Daehae-ro, Nam-gu, Pohang-si, Gyeongsangbuk-do | 129.366°N | 36.019°E | ||
Daegu | 143 | 10, Hyodong-ro 2-gil, Dong-gu, Daegu | 128.653°N | 35.878°E | |
422,161 | 1000, Gukchaebosang-ro, Suseong-gu, Daegu | 128.640°N | 35.865°E | ||
Busan | 159 | 5-11, Bokbyeongsan-gil 32beon-gil, Jung-gu, Busan | 129.032°N | 35.105°E | |
221,112 | 10, Gwangbok-ro 55beon-gil, Jung-gu, Busan | 129.031°N | 35.100°E | ||
Jeju-island | Jeju | 184 | 32, Mandeok-ro 6-gil, Jeju-si, Jeju-do | 126.530°N | 33.514°E |
339,111 | 10, Gwangyang 9-gil, Jeju-si, Jeju-do | 126.532°N | 33.500°E |
References
- Cao, J.-J.; Wang, Q.-Y.; Chow, J.C.; Watson, J.G.; Tie, X.-X.; Shen, Z.-X.; Wang, P.; An, Z.-S. Impacts of aerosol compositions on visibility impairment in Xi’an, China. Atmos. Environ. 2012, 59, 559–566. [Google Scholar] [CrossRef]
- Charlson, R.J.; Schwartz, S.E.; Hales, J.M.; Cess, R.D.; Coakley, J.A., Jr.; Hansen, J.E.; Hofmann, D.J. Climate forcing by anthropogenic aerosols. Science 1992, 255, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Gao, D.; Liao, F.; Zhou, F.; Wang, X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol. Environ. Saf. 2016, 128, 67–74. [Google Scholar] [CrossRef] [PubMed]
- Pui, D.Y.H.; Chen, S.-C.; Zuo, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar] [CrossRef]
- Ramanathan, V.; Feng, Y. Air pollution, greenhouse gases and climate change: Global and regional perspectives. Atmos. Environ. 2009, 43, 37–50. [Google Scholar] [CrossRef]
- Ramanathan, V.; Vogelmann, A.M. Greenhouse effect, atmospheric solar absorption and the Earth’s radiation budget: From the Arrhenius-Langley era to the 1990s. Ambio J. Hum. Environ. 1997, 26, 38–46. [Google Scholar]
- Wang, J.L.; Zhang, Y.H.; Shao, M.; Liu, X.L.; Zeng, L.M.; Cheng, C.L.; Xu, X.F. Quantitative relationship between visibility and mass concentration of PM2.5 in Beijing. J. Environ. Sci. 2006, 18, 475–481. [Google Scholar]
- Dockery, D.W.; Pope, C.A. Acute respiratory effects of particulate air pollution. Annu. Rev. Public Health 1994, 15, 107–132. [Google Scholar] [CrossRef]
- Laden, F.; Schwartz, J.; Speizer, F.E.; Dockery, D.W. Reduction in fine particulate air pollution and mortality: Extended follow-up of the Harvard six Cities study. Am. J. Respir. Crit. Care Med. 2006, 173, 667–672. [Google Scholar] [CrossRef]
- Polichetti, G.; Cocco, S.; Spinali, A.; Trimarco, V.; Nunziata, A. Effects of particulate matter (PM10, PM2.5 and PM1) on cardiovascular system. Toxicology 2009, 261, 1–8. [Google Scholar] [CrossRef]
- Pope, C.A., 3rd; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 709–742. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.F.; Xu, Y.H.; Shi, M.H.; Lian, Y.X. The impact of PM2.5 on the human respiratory system. J. Thorac. Dis. 2016, 8, E69–E74. [Google Scholar] [PubMed]
- IARC. IARC: Outdoor Air Pollution a Leading Environmental Cause of Cancer Deaths; World Health Organization: Geneva, Switzerland, 2013; pp. 1–4. [Google Scholar]
- Huang, Y.; Shen, H.; Chen, H.; Wang, R.; Zhang, Y.; Su, S.; Chen, Y.; Lin, N.; Zhuo, S.; Zhong, Q.; et al. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environ. Sci. Technol. 2014, 48, 13834–13843. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Ho, C.-H.; Lee, Y.G.; Choi, H.-J.; Song, C.-K. Influence of transboundary air pollutants from China on the high- PM10 episode in Seoul, Korea for the period October 16–20, 2008. Atmos. Environ. 2013, 77, 430–439. [Google Scholar] [CrossRef]
- Park, Y.M.; Park, K.S.; Kim, H.; Yu, S.M.; Noh, S.; Kim, M.S.; Kim, J.Y.; Ahn, J.Y.; Lee, M.D.; Seok, K.S.; et al. Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea: Impact of China’s winter heating. Environ. Pollut. 2018, 233, 735–744. [Google Scholar] [CrossRef]
- Dehkhoda, N.; Noh, Y.; Joo, S. Long-Term Variation of Black Carbon Absorption Aerosol Optical Depth from AERONET Data over East Asia. Remote Sens. 2020, 12, 3551. [Google Scholar] [CrossRef]
- Dehkhoda, N.; Sim, J.; Joo, S.; Shin, S.; Noh, Y. Retrieval of Black Carbon Absorption Aerosol Optical Depth from AERONET Observations over the World during 2000–2018. Remote Sens. 2022, 14, 1510. [Google Scholar] [CrossRef]
- Ding, A.; Huang, X.; Nie, W.; Chi, X.; Xu, Z.; Zheng, L.; Xu, Z.; Xie, Y.; Qi, X.; Shen, Y.; et al. Significant reduction of PM2.5 in eastern China due to regional-scale emission control: Evidence from SORPES in 2011–2018. Atmos. Chem. Phys. 2019, 19, 11791–11801. [Google Scholar] [CrossRef] [Green Version]
- Ito, A.; Wakamatsu, S.; Morikawa, T.; Kobayashi, S. 30 years of air quality trends in Japan. Atmosphere 2021, 12, 1072. [Google Scholar] [CrossRef]
- Yamagami, M.; Ikemori, F.; Nakashima, H.; Hisatsune, K.; Ueda, K.; Wakamatsu, S.; Osada, K. Trends in PM2.5 Concentration in Nagoya, Japan, from 2003 to 2018 and impacts of PM2.5 countermeasures. Atmosphere 2021, 12, 590. [Google Scholar] [CrossRef]
- Lang, J.; Zhang, Y.; Zhou, Y.; Cheng, S.; Chen, D.; Guo, X.; Chen, S.; Li, X.; Xing, X.; Wang, H. Trends of PM2.5 and chemical composition in Beijing, 2000–2015. Aerosol Air Qual. Res. 2017, 17, 412–425. [Google Scholar] [CrossRef]
- Fontes, T.; Li, P.; Barros, N.; Zhao, P. Trends of PM2.5 Concentrations in China: A long term approach. J. Environ. Manag. 2017, 196, 719–732. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Homma, J.; Tamura, K.; Inoue, M.; Karita, K.; Yano, E. Decreasing trends of suspended particulate matter and PM2.5 Concentrations in Tokyo, 1990–2010. J. Air Waste Manag. Assoc. 2013, 63, 737–748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, M.J.; Kim, Y.P. Trends of the PM10 concentrations and high PM10 concentration cases in Korea. J. Korean Soc. Atmos. Environ. 2019, 35, 249–264. [Google Scholar] [CrossRef]
- Xu, W.; Kuang, Y.; Bian, Y.; Liu, L.; Li, F.; Wang, Y.; Xue, B.; Luo, B.; Huang, S.; Yuan, B.; et al. Current challenges in visibility improvement in southern China. Environ. Sci. Technol. Lett. 2020, 7, 395–401. [Google Scholar] [CrossRef]
- Liu, J.; Ren, C.; Huang, X.; Nie, W.; Wang, J.; Sun, P.; Chi, X.; Ding, A. Increased aerosol extinction efficiency hinders visibility improvement in eastern China. Geophys. Res. Lett. 2020, 47, e2020GL090167. [Google Scholar] [CrossRef]
- Korea Environment Institute. Particulate Matter Perception Survey; KEI Focus, Republic of Korea: Sejong, Korea, 2019. [Google Scholar]
- Koschmieder, H. Theorie der horizontalen Sichtweite. Beitrage zur Physik der freien Atmosphare. Meteorol. Z. 1924, 12, 3353. [Google Scholar]
- Kim, K.W. Optical properties of size-resolved aerosol chemistry and visibility variation observed in the urban site of Seoul, Korea. Aerosol Air Qual. Res. 2015, 15, 271–283. [Google Scholar] [CrossRef] [Green Version]
- Sloane, C.S.; Wolff, G.T. Prediction of ambient light scattering using a physical model responsive to relative humidity: Validation with measurements from Detroit. Atmos. Environ. 1985, 19, 669–680. [Google Scholar] [CrossRef]
- Yuan, C.-S.; Lee, C.-G.; Liu, S.-H.; Chang, J.-c.; Yuan, C.; Yang, H.-Y. Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols. Atmos. Res. 2006, 82, 663–679. [Google Scholar] [CrossRef]
- Khanna, I.; Khare, M.; Gargava, P.; Khan, A.A. Effect of PM2.5 chemical constituents on atmospheric visibility impairment. J. Air Waste Manag. Assoc. 2018, 68, 430–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.X.; Wang, D.C.; Cheng, S.H.; Wang, Z.; Zhou, Y.; Zhou, X.H.; Wang, W.X. Influence of meteorological conditions and particulate matter on visual range impairment in Jinan, China. Sci. Total Environ. 2007, 383, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Ma, J.; An, J.; Yuan, L.; Zhu, B.; Liu, D.; Wang, J.; Yang, Y.; Cui, H. Impacts of meteorological condition and aerosol chemical compositions on visibility impairment in Nanjing, China. J. Clean. Prod. 2016, 131, 112–120. [Google Scholar] [CrossRef]
- Jung, C.H.; Um, J.; Bae, S.Y.; Yoon, Y.J.; Lee, S.S.; Lee, J.Y.; Kim, Y.P. Analytic expression for the aerosol mass efficiencies for polydispersed accumulation mode. Aerosol Air Qual. Res. 2018, 18, 1503–1514. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Kim, Y. Opto-chemical characteristics of visibility impairment using semi-continuous aerosol monitoring in an urban area during summertime. J. Korean Soc. Atmos. Environ. 2003, 19, 647–661. [Google Scholar]
- Qu, W.J.; Wang, J.; Zhang, X.Y.; Wang, D.; Sheng, L.F. Influence of relative humidity on aerosol composition: Impacts on light extinction and visibility impairment at two sites in coastal area of China. Atmos. Res. 2015, 153, 500–511. [Google Scholar] [CrossRef]
- Cheng, Z.; Ma, X.; He, Y.; Jiang, J.; Wang, X.; Wang, Y.; Sheng, L.; Hu, J.; Yan, N. Mass extinction efficiency and extinction hygroscopicity of ambient PM2.5 in urban China. Environ. Res. 2017, 156, 239–246. [Google Scholar] [CrossRef]
- He, Q.; Zhou, G.; Geng, F.; Gao, W.; Yu, W. Spatial distribution of aerosol hygroscopicity and its effect on PM2.5 Retrieval in East China. Atmos. Res. 2016, 170, 161–167. [Google Scholar] [CrossRef]
- Lin, C.; Li, Y.; Yuan, Z.; Lau, A.K.H.; Li, C.; Fung, J.C.H. Using satellite remote sensing data to estimate the high-resolution distribution of ground-level PM2.5. Remote Sens. Environ. 2015, 156, 117–128. [Google Scholar] [CrossRef]
- Tang, I.N. Chemical and size effects of hygroscopic aerosols on light scattering coefficients. J. Geophys. Res. Atmos. 1996, 101, 19245–19250. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, X.; Xu, X.; Zhao, X. Long-term visibility trends and characteristics in the region of Beijing, Tianjin, and Hebei, China. Atmos. Res. 2011, 101, 711–718. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, T.; Liu, D.; Gong, S.; Xu, J.; Ma, X. Quantifying the influences of PM2.5 and relative humidity on change of atmospheric visibility over recent winters in an urban area of East China. Atmosphere 2020, 11, 461. [Google Scholar] [CrossRef]
- Kendall, M. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Mann, H.B. Spatial-temporal variation and protection of wetland resources in Xinjiang. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Cho, J.H.; Kim, H.S.; Chung, Y.S. Spatio-temporal changes of PM10 trends in South Korea caused by East Asian atmospheric variability. Air Qual. Atmos. Health 2021, 14, 1001–1016. [Google Scholar] [CrossRef]
- Wan, Z.; Zhu, M.; Chen, S.; Sperling, D. Pollution: Three steps to a green shipping industry. Nature 2016, 530, 275–277. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, S.; Jiang, J.; Fu, Q.; Chen, C.; Xu, B.; Yu, J.; Fu, X.; Hao, J. Long-term trend of haze pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut. 2013, 182, 101–110. [Google Scholar] [CrossRef]
- Husar, R.B.; Falke, S.R. The Relationship between Aerosol Light Scattering and Fine Mass; Report No. CX 824179-01; Center for Air Pollution Impact and Trend Analysis (CAPITA): St. Louis, MO, USA, 1996. [Google Scholar]
- Zhang, Q.H.; Zhang, J.P.; Xue, H.W. The challenge of improving visibility in Beijing. Atmos. Chem. Phys. 2010, 10, 7821–7827. [Google Scholar] [CrossRef] [Green Version]
- Hand, J.L.; Malm, W.C. Review of aerosol mass scattering efficiencies from ground-based measurements since 1990. J. Geophys. Res. Atmos. 2007, 112, D16203. [Google Scholar] [CrossRef]
- Jing, J.; Wu, Y.; Tao, J.; Che, H.; Xia, X.; Zhang, X.; Yan, P.; Zhao, D.; Zhang, L. Observation and analysis of near-surface atmospheric aerosol optical properties in urban Beijing. Particuology 2015, 18, 144–154. [Google Scholar] [CrossRef]
- Kim, K.W. Time-resolved chemistry measurement to determine the aerosol optical properties using PIXE analysis. J. Korean Phys. Soc. 2011, 59, 189–195. [Google Scholar] [CrossRef]
- Si, F.-Q.; Liu, J.; Xie, P.-H.; Zhang, Y.-J.; Liu, W.-Q.; Kuze, H.; Cheng, L.; Takeuchi, N.; Lagrosas, N. Determination of aerosol extinction coefficient and mass extinction efficiency by DOAS with a flashlight source. Chin. Phys. 2005, 14, 2360. [Google Scholar]
- Jung, J.; Lee, H.; Kim, Y.J.; Liu, X.; Zhang, Y.; Gu, J.; Fan, S. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J. Environ. Manag. 2009, 90, 3231–3244. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.W. Physico-chemical characteristics of visibility impairment by airborne pollen in an urban area. Atmos. Environ. 2007, 41, 3565–3576. [Google Scholar] [CrossRef]
- Park, S.S.; Kim, K.W.; Schauer, J.J. Influence of hydrophilic and hydrophobic water-soluble organic carbon fractions on light extinction at an urban site. J. Korean Phys. Soc. 2013, 63, 2047–2053. [Google Scholar] [CrossRef]
- Shin, J.; Kim, D.; Noh, Y. Estimation of Aerosol Extinction Coefficient Using Camera Images and Application in Mass Extinction Efficiency Retrieval. Remote Sens. 2022, 14, 1224. [Google Scholar] [CrossRef]
2001–2020 | 2015–2020 | ||||||
---|---|---|---|---|---|---|---|
Province | City | Visibility (km/yr) | PM10 ((μg/m3)/yr) | Qe,10 ((m2/g)/yr) | Visibility (km/yr) | PM2.5 ((μg/m3)/yr) | Qe,2.5 ((m2/g)/yr) |
Metropolitan Area | Seoul | 0.04 | –1.86 | 0.15 | −0.14 | −0.10 | 0.41 |
Suwon | 0.09 | –1.14 | 0.07 | 0.53 | –1.06 | 0.30 | |
Gangwon-do | Chuncheon | 0.01 | –1.25 | 0.06 | −0.61 | −0.29 | 1.12 |
Wonju | −0.12 | −0.82 | 0.22 | −0.03 | –3.29 | 2.47 | |
Gyeongsang-do | Pohang | 0.84 | –1.59 | 0.11 | −0.02 | –4.40 | 2.20 |
Daegu | 0.15 | −0.99 | 0.06 | −0.19 | 0.16 | 0.28 | |
Busan | 0.04 | –1.28 | 0.12 | 0.11 | –2.34 | 1.10 | |
Jeju-island | Jeju | 0.12 | −0.39 | −0.08 | −0.09 | –1.98 | 0.99 |
Visibility | PM10 | Qe,10 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Province | City | z | p | Slope | z | p | Slope | z | p | Slope |
Metropolitan area | Seoul | 0.9409 | 0.3468 | 0.0269 | –4.8342 | 0.0000 | –1.5320 | 3.1471 | 0.0016 | 0.1326 |
Suwon | 0.9455 | 0.3444 | 0.0517 | –3.6468 | 0.0003 | –1.0594 | 2.2061 | 0.0274 | 0.0610 | |
Gangwon-do | Chuncheon | 0.0758 | 0.9396 | 0.0168 | –3.1817 | 0.0015 | –1.1688 | 1.4394 | 0.1501 | 0.0546 |
Wonju | –2.7289 | 0.0064 | −0.1216 | –2.3790 | 0.0174 | −0.8440 | 2.4490 | 0.0143 | 0.2113 | |
Gyeongsang-do | Pohang | 2.6589 | 0.0078 | 0.0833 | –4.3382 | 0.0000 | –1.6399 | 3.0787 | 0.0021 | 0.1153 |
Daegu | 2.8467 | 0.0044 | 0.1673 | –3.0657 | 0.0022 | –1.0372 | 2.2993 | 0.0215 | 0.0571 | |
Busan | 1.4694 | 0.1417 | 0.0445 | –3.9884 | 0.0000 | –1.3423 | 3.4986 | 0.0005 | 0.1161 | |
Jeju-island | Jeju | 3.7960 | 0.0001 | 0.1278 | –1.7196 | 0.0855 | −0.4943 | –1.6547 | 0.0980 | −0.0818 |
Visibility | PM2.5 | Qe,2.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Province | City | z | p | Slope | z | p | Slope | z | p | Slope |
Metropolitan area | Seoul | −0.7515 | 0.4524 | −0.1574 | 0 | 1 | −0.0698 | 1.1272 | 0.2597 | 0.3664 |
Suwon | 0 | 1 | 0.5332 | 0 | 1 | –1.0639 | 0 | 1 | 0.3035 | |
Gangwon-do | Chuncheon | –1.7146 | 0.0864 | −0.6571 | –1.2247 | 0.2207 | −0.3829 | 1.7146 | 0.0864 | 1.0276 |
Wonju | −0.2450 | 0.8065 | −0.0687 | –2.2045 | 0.0275 | –3.1575 | 2.2045 | 0.0275 | 2.4609 | |
Gyeongsang-do | Pohang | 0 | 1 | −0.0167 | –1.0445 | 0.2963 | –4.4076 | 1.0445 | 0.2963 | 2.1945 |
Daegu | –1.2247 | 0.2207 | −0.2330 | 0.2449 | 0.8065 | 0.3714 | 0.7348 | 0.4624 | 0.3024 | |
Busan | 1.5029 | 0.1329 | 0.0824 | –2.6301 | 0.0085 | –2.0690 | 2.6301 | 0.0085 | 0.6510 | |
Jeju-island | Jeju | −0.3757 | 0.7071 | −0.1005 | –2.2544 | 0.0242 | –1.9696 | 2.2544 | 0.0242 | 1.0405 |
Qe,10 | Qe,2.5 | |||||
---|---|---|---|---|---|---|
City | z | p | Slope | z | p | Slope |
3.4715 | 0.0005 | 0.0726 | 2.6301 | 0.0085 | 0.8522 | |
2001 | 6.0 ± 3.8 | Data unavailable | ||||
2002 | 5.7 ± 5.3 | |||||
2003 | 6.0 ± 4.6 | |||||
2004 | 5.2 ± 4.4 | |||||
2005 | 5.4 ± 4.7 | |||||
2006 | 6.0 ± 5.0 | |||||
2007 | 6.2 ± 5.6 | |||||
2008 | 6.3 ± 5.5 | |||||
2009 | 6.6 ± 5.7 | |||||
2010 | 6.2 ± 6.6 | |||||
2011 | 6.2 ± 7.4 | |||||
2012 | 6.5 ± 6.2 | |||||
2013 | 6.2 ± 4.5 | |||||
2014 | 6.1 ± 5.1 | |||||
2015 | 6.2 ± 4.6 | 11.1 ± 12.2 | ||||
2016 | 6.3 ± 5.8 | 11.3 ± 9.8 | ||||
2017 | 6.6 ± 3.7 | 11.7 ± 7.4 | ||||
2018 | 7.3 ± 10.2 | 13.3 ± 16.5 | ||||
2019 | 7.1 ± 5.7 | 13.8 ± 12.9 | ||||
2020 | 7.8 ± 9.5 | 15.4 ± 16.1 |
Qe,10 (m2/g) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Province | City | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 |
Metropolitan area | Seoul | 6.9 ± 4.8 | 3.6 ± 1.8 | 4.3 ± 2.3 | 4.1 ± 2.4 | 5.1 ± 3.0 | 6.3 ± 4.5 | 7.1 ± 7.2 | 7.7 ± 5.6 | 7.3 ± 6.1 | 7.3 ± 5.1 | 7.0 ± 5.4 | 7.4 ± 3.7 | 7.8 ± 6.2 | 8.1 ± 4.1 | 6.5 ± 3.0 | 5.7 ± 2.5 | 7.3 ± 3.0 | 7.9 ± 3.3 | 8.0 ± 3.5 | 7.7 ± 3.8 |
Suwon | 5.1 ± 3.1 | 6.4 ± 5.6 | 6.5 ± 4.2 | 5.2 ± 2.3 | 5.5 ± 2.8 | 6.1 ± 2.6 | 6.4 ± 2.8 | 6.4 ± 2.7 | 5.5 ± 2.5 | 4.9 ± 2.1 | 6.7 ± 2.9 | 6.3 ± 2.5 | 7.1 ± 3.2 | 7.0 ± 3.3 | 6.8 ± 3.3 | 6.9 ± 5.1 | |||||
Gangwon-do | Chuncheon | 6.0 ± 8.5 | 5.2 ± 3.9 | 4.6 ± 3.3 | 6.0 ± 9.2 | 7.4 ± 10.1 | 5.3 ± 3.6 | 6.4 ± 5.9 | 7.4 ± 7.8 | 7.0 ± 8.5 | 6.3 ± 5.5 | 6.6 ± 3.7 | 6.2 ± 3.9 | 6.3 ± 3.1 | 5.9 ± 3.3 | 5.4 ± 2.5 | 6.4 ± 3.5 | 7.5 ± 5.1 | 7.3 ± 5.4 | ||
Wonju | 5.6 ± 3.1 | 6.1 ± 6.9 | 4.5 ± 3.3 | 3.7 ± 2.2 | 6.8 ± 6.1 | 7.9 ± 9.0 | 5.5 ± 4.4 | 5.3 ± 3.4 | 6.5 ± 12.4 | 6.8 ± 18.7 | 4.3 ± 2.3 | 5.0 ± 2.4 | 4.9 ± 2.7 | 6.2 ± 6.4 | 7.6 ± 12.7 | 7.5 ± 6.5 | 9.0 ± 17.3 | 9.5 ± 13.3 | 12.0 ± 26.7 | ||
Gyeongsang-do | Pohang | 6.0 ± 3.9 | 3.9 ± 3.5 | 3.8 ± 2.1 | 3.3 ± 2.3 | 4.0 ± 3.8 | 4.8 ± 3.9 | 5.3 ± 3.7 | 6.6 ± 4.1 | 5.5 ± 3.1 | 5.7 ± 2.9 | 5.7 ± 3.4 | 5.2 ± 3.1 | 5.1 ± 2.3 | 5.9 ± 4.4 | 6.0 ± 3.1 | 6.6 ± 3.0 | 5.9 ± 2.6 | 6.3 ± 2.5 | 6.3 ± 2.4 | |
Daegu | 6.2 ± 3.3 | 6.0 ± 3.2 | 5.6 ± 2.8 | 6.4 ± 4.1 | 6.6 ± 3.4 | 6.2 ± 2.9 | 7.2 ± 4.6 | 6.2 ± 3.2 | 6.2 ± 3.4 | 5.9 ± 2.9 | 6.4 ± 2.7 | 7.2 ± 4.2 | 6.8 ± 2.9 | 7.5 ± 4.5 | |||||||
Busan | 4.8 ± 2.8 | 5.0 ± 2.8 | 4.2 ± 2.5 | 3.8 ± 1.6 | 4.1 ± 1.7 | 4.3 ± 1.8 | 4.8 ± 2.3 | 5.5 ± 2.5 | 5.8 ± 3.0 | 5.9 ± 3.7 | 5.8 ± 2.7 | 5.6 ± 2.5 | 4.9 ± 2.2 | 5.4 ± 8.4 | 5.8 ± 2.8 | 5.7 ± 2.5 | 5.8 ± 2.3 | 6.4 ± 2.9 | 7.6 ± 3.9 | ||
Jeju-island | Jeju | 7.0 ± 4.8 | 8.3 ± 6.8 | 8.7 ± 5.8 | 6.4 ± 4.8 | 6.2 ± 3.7 | 5.9 ± 3.2 | 6.6 ± 9.7 | 6.3 ± 3.7 | 8.0 ± 6.5 | 6.1 ± 4.4 | 6.9 ± 7.1 | 7.8 ± 14.0 | 6.3 ± 5.1 | 5.6 ± 7.3 | 5.7 ± 3.6 | 5.0 ± 2.4 | 5.3 ± 2.4 | 6.7 ± 2.7 | 6.5 ± 2.9 | 6.8 ± 2.5 |
Province | City | Qe,2.5 (m2/g) | |||||
---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | 2018 | 2019 | 2020 | ||
Metropolitan area | Seoul | 12.5 ± 7.0 | 10.5 ± 6.2 | 12.8 ± 5.9 | 14.6 ± 8.4 | 13.9 ± 6.9 | 12.9 ± 8.7 |
Suwon | 14.1 ± 8.0 | 13.2 ± 9.0 | 14.7 ± 12.4 | ||||
Gangwon-do | Chuncheon | 10.7 ± 6.8 | 10.4 ± 6.0 | 12.9 ± 10.8 | 13.9 ± 9.8 | 14.6 ± 14.1 | |
Wonju | 9.4 ± 6.1 | 10.9 ± 8.3 | 14.4 ± 23.6 | 16.1 ± 27.7 | 19.2 ± 33.8 | ||
Gyeongsang-do | Pohang | 11.2 ± 8.4 | 14.5 ± 10.4 | 15.6 ± 10.4 | |||
Daegu | 13.3 ± 11.2 | 11.9 ± 6.2 | 15.4 ± 19.5 | 13.3 ± 10.3 | 14.0 ± 9.8 | ||
Busan | 8.9 ± 19.4 | 9.5 ± 6.4 | 10.2 ± 6.4 | 10.5 ± 6.1 | 11.3 ± 6.7 | 15.4 ± 9.1 | |
Jeju-island | Jeju | 9.4 ± 5.2 | 10.6 ± 6.6 | 10.0 ± 5.5 | 12.0 ± 5.3 | 12.6 ± 6.2 | 14.8 ± 7.0 |
Visibility | PM2.5 | Qe,2.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Province | City | z | p | Slope | z | p | Slope | z | p | Slope |
Metropolitan area | Seoul | −0.7632 | 0.4453 | −0.0077 | –1.1716 | 0.2414 | −0.0383 | 2.6105 | 0.0090 | 0.0452 |
Suwon | 3.2651 | 0.0011 | 0.0452 | –2.8428 | 0.0045 | −0.1533 | 1.8194 | 0.0689 | 0.0463 | |
Gangwon-do | Chuncheon | –2.2603 | 0.0238 | −0.0245 | –2.1121 | 0.0347 | −0.1075 | 4.3565 | 0.0000 | 0.0991 |
Wonju | 0.4293 | 0.6677 | 0.0105 | –3.5821 | 0.0003 | −0.3492 | 5.4066 | 0.0000 | 0.1797 | |
Gyeongsang-do | Pohang | 0.1918 | 0.8479 | 0.0011 | –2.8612 | 0.0042 | −0.1522 | 3.5209 | 0.0004 | 0.1100 |
Daegu | –1.4831 | 0.1380 | −0.0097 | −0.5423 | 0.5876 | −0.0227 | 2.5346 | 0.0113 | 0.0399 | |
Busan | 2.0351 | 0.0418 | 0.0129 | –5.2813 | 0.0000 | −0.2257 | 5.3409 | 0.0000 | 0.1056 | |
Jeju-island | Jeju | –1.0690 | 0.2851 | −0.0061 | –5.1873 | 0.0000 | −0.1997 | 5.6489 | 0.0000 | 0.1063 |
PM10 | PM2.5 | ||||||
---|---|---|---|---|---|---|---|
2001–2020 | 2015–2020 | ||||||
Qe,10 ((m2/g)/yr) | Qe,2.5 ((m2/g)/yr) | ||||||
Province | City | Low | Moderate | High | Low | Moderate | High |
19–21 μg/m3 | 69–71 μg/m3 | 139–141 μg/m3 | 9–11 μg/m3 | 29–31 μg/m3 | 69–71 μg/m3 | ||
Metropolitan area | Seoul | −0.05 | 0.18 | 0.21 | 0.17 | 0.25 | −0.14 |
Suwon | −0.08 | 0.11 | 0.17 | −0.07 | −0.68 | –1.35 | |
Gangwon-do | Chuncheon | −0.09 | 0.10 | 0.13 | 0.18 | 0.87 | 1.43 |
Wonju | −0.02 | 0.27 | 0.33 | 0.09 | 1.05 | 0.96 | |
Gyeongsang-do | Pohang | −0.07 | 0.04 | 0.09 | −0.06 | 0.65 | 4.34 |
Daegu | −0.09 | 0.04 | −0.02 | −0.02 | 0.15 | 0.40 | |
Busan | −0.01 | 0.05 | 0.09 | 0.14 | 0.22 | 0.23 | |
Jeju-island | Jeju | −0.10 | 0.02 | 0.10 | 0.02 | 0.48 | 1.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, S.; Dehkhoda, N.; Shin, J.; Park, M.E.; Sim, J.; Noh, Y. A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea. Remote Sens. 2022, 14, 1592. https://doi.org/10.3390/rs14071592
Joo S, Dehkhoda N, Shin J, Park ME, Sim J, Noh Y. A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea. Remote Sensing. 2022; 14(7):1592. https://doi.org/10.3390/rs14071592
Chicago/Turabian StyleJoo, Sohee, Naghmeh Dehkhoda, Juseon Shin, Mi Eun Park, Juhyeon Sim, and Youngmin Noh. 2022. "A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea" Remote Sensing 14, no. 7: 1592. https://doi.org/10.3390/rs14071592
APA StyleJoo, S., Dehkhoda, N., Shin, J., Park, M. E., Sim, J., & Noh, Y. (2022). A Study on the Long-Term Variations in Mass Extinction Efficiency Using Visibility Data in South Korea. Remote Sensing, 14(7), 1592. https://doi.org/10.3390/rs14071592