Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Zonal Wind and Temperature Variability
3.2. Zonally Asymmetric Stratopause Variability
3.3. Wave 1 and Wave 2 in the Upper Stratosphere and Lower Mesosphere
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- France, J.A.; Harvey, V.L.; Randall, C.E.; Hitchman, M.H.; Schwartz, M.J. A climatology of stratopause temperature and height in the polar vortex and anticyclones. J. Geophys. Res. Atmos. 2012, 117, D06116. [Google Scholar] [CrossRef] [Green Version]
- Hitchman, M.H.; Gille, J.C.; Rodgers, C.D.; Brasseur, G. The separated polar winter stratopause: A gravity wave driven climatological feature. J. Atmos. Sci. 1989, 46, 410–422. [Google Scholar] [CrossRef] [Green Version]
- de la Torre, L.; Garcia, R.R.; Barriopedro, D.; Chandran, A. Climatology and characteristics of stratospheric sudden warmings in the Whole Atmosphere Community Climate Model. J. Geophys. Res. Atmos. 2012, 117, D04110. [Google Scholar] [CrossRef] [Green Version]
- Vignon, E.; Mitchell, D.M. The stratopause evolution during different types of sudden stratospheric warming event. Clim. Dyn. 2015, 44, 3323–3337. [Google Scholar] [CrossRef] [Green Version]
- Gerding, M.; Hoffner, J.; Lautenbach, J.; Rauthe, M.; Lubken, F.J. Seasonal variation of nocturnal temperatures between 1 and 105 km altitude at 54 degrees N observed by lidar. Atmos. Chem. Phys. 2008, 8, 7465–7482. [Google Scholar] [CrossRef] [Green Version]
- Rind, D.; Shindell, D.; Lonergan, P.; Balachandran, N.K. Climate change and the middle atmosphere. Part III: The doubled CO2 climate revisited. J. Clim. 1998, 11, 876–894. [Google Scholar] [CrossRef]
- Limpasuvan, V.; Orsolini, Y.J.; Chandran, A.; Garcia, R.R.; Smith, A.K. On the composite response of the MLT to major sudden stratospheric warming events with elevated stratopause. J. Geophys. Res. Atmos. 2016, 121, 4518–4537. [Google Scholar] [CrossRef] [Green Version]
- Charlton, A.J.; Polvani, L.M.; Perlwitz, J.; Sassi, F.; Manzini, E.; Shibata, K.; Pawson, S.; Nielsen, J.E.; Rind, D. A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Clim. 2007, 20, 470–488. [Google Scholar] [CrossRef]
- Charlton, A.J.; Polvani, L.M. A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Clim. 2007, 20, 449–469. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; Palmeiro, F.M.; Barriopedro, D.; Calvo, N.; Langematz, U.; Shibata, K. On the representation of major stratospheric warmings in reanalyses. Atmos. Chem. Phys. 2019, 19, 9469–9484. [Google Scholar] [CrossRef] [Green Version]
- Labitzke, K. Interannual variability of the winter stratosphere in the Northern Hemisphere. Mon. Weather Rev. 1977, 105, 762–770. [Google Scholar] [CrossRef]
- Labitzke, K.; Naujokat, B. The lower Arctic stratosphere in winter since 1952. In SPARC Newsletter; World Climate Research Programme SPARC Office: Zurich, Switzerland, 2000; Volume 15, pp. 11–14. Available online: https://www.sparc-climate.org/publications/newsletter/ (accessed on 14 December 2021).
- Waugh, D.W.; Randel, W.J. Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics. J. Atmos. Sci. 1999, 56, 1594–1613. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Manney, G.L. Does the Arctic stratospheric polar vortex exhibit signs of preconditioning prior to sudden stratospheric warmings? J. Atmos. Sci. 2020, 77, 611–632. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Gray, L.J.; Dunkerton, T.J.; Hamilton, K.; Haynes, P.H.; Randel, W.J.; Holton, J.R.; Alexander, M.J.; Hirota, I.; Horinouchi, T.; et al. The quasi-biennial oscillation. Rev. Geophys. 2001, 39, 179–229. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, F.; Ma, Z.; Zhang, C.; Xu, M.; Wang, T.; Zhang, R. Seasonal evolution of the quasi-biennial oscillation impact on the Northern Hemisphere polar vortex in winter. J. Geophys. Res. Atmos. 2019, 124, 12568–12586. [Google Scholar] [CrossRef]
- Hu, J.; Ren, R.; Yu, Y.; Xu, H. The boreal spring stratospheric final warming and its interannual and interdecadal variability. Sci. China Earth Sci. 2014, 57, 710–718. [Google Scholar] [CrossRef]
- Curbelo, J.; Chen, G.; Mechoso, C.R. Lagrangian analysis of the northern stratospheric polar vortex split in April 2020. Geophys. Res. Lett. 2021, 48, e2021GL093874. [Google Scholar] [CrossRef]
- Hu, J.; Ren, R.; Xu, H. Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci. 2014, 71, 2319–2334. [Google Scholar] [CrossRef]
- Hu, J.; Ren, R.; Xu, H.; Yang, S. Seasonal timing of stratospheric final warming associated with the intensity of stratospheric sudden warming in preceding winter. Sci. China Earth Sci. 2015, 58, 615–627. [Google Scholar] [CrossRef]
- Manney, G.L.; Kirstin, K.; Pawson, S.; Minschwaner, K.; Schwartz, M.J.; Daffer, W.H.; Livesey, N.J.; Mlynczak, M.G.; Remsberg, E.E.; Russell, J.M.; et al. The evolution of the stratopause during the 2006 major warming: Satellite data and assimilated meteorological analyses. J. Geophys. Res. Atmos. 2008, 113, D11115. [Google Scholar] [CrossRef] [Green Version]
- Chandran, A.; Collins, R.L.; Garcia, R.R.; Marsh, D.R.; Harvey, V.L.; Yue, J.; de la Torre, L. A climatology of elevated stratopause events in the whole atmosphere community climate model. J. Geophys. Res. Atmos. 2013, 118, 1234–1246. [Google Scholar] [CrossRef]
- Eixmann, R.; Matthias, V.; Höffner, J.; Baumgarten, G.; Gerding, M. Local stratopause temperature variabilities and their embedding in the global context. Ann. Geophys. 2020, 38, 373–383. [Google Scholar] [CrossRef] [Green Version]
- Stray, N.H.; Orsolini, Y.J.; Espy, P.J.; Limpasuvan, V.; Hibbins, R.E. Observations of planetary waves in the mesosphere-lower thermosphere during stratospheric warming events. Atmos. Chem. Phys. 2015, 15, 4997–5005. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Daffer, W.H.; Strwbridge, K.B.; Walker, K.A.; Boone, C.D.; Bernath, P.F.; Kerzenmacher, T.; Schwartz, M.J.; Strong, K.; Sica, R.J.; et al. The high Arctic in extreme winters: Vortex, temperature, and MLS and ACE-FTS trace gas evolution. Atmos. Chem. Phys. 2008, 8, 505–522. [Google Scholar] [CrossRef] [Green Version]
- Manney, G.L.; Schwartz, M.J.; Krüger, K.; Santee, M.L.; Pawson, S.; Lee, J.N.; Daffer, W.H.; Fuller, R.A.; Livesey, N.J. Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett. 2009, 36, L12815. [Google Scholar] [CrossRef] [Green Version]
- Marsh, D.R. Chemical–dynamical coupling in the mesosphere and lower thermosphere. In Aeronomy of the Earth’s Atmosphere and Ionosphere; Abdu, M., Pancheva, D., Eds.; IAGA Special Sopron Book Series; Springer: Dordrecht, The Netherlands, 2011; Volume 2. [Google Scholar] [CrossRef]
- Smith, A.K.; Garcia, R.R.; Marsh, D.R.; Richter, J.H. WACCM simulations of the mean circulation and trace species transport in the winter mesosphere. J. Geophys. Res. Atmos. 2011, 116, D20115. [Google Scholar] [CrossRef]
- Wang, Y.; Shulga, V.; Milinevsky, G.; Patoka, A.; Evtushevsky, O.; Klekociuk, A.; Han, W.; Grytsai, A.; Shulga, D.; Myshenko, V.; et al. Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements. Atmos. Chem. Phys. 2019, 19, 10303–10317. [Google Scholar] [CrossRef] [Green Version]
- Remsberg, E. Observation and attribution of temperature trends near the stratopause from HALOE. J. Geophys. Res. Atmos. 2019, 124, 6600–6611. [Google Scholar] [CrossRef]
- France, J.A.; Harvey, V.L. A climatology of the stratopause in WACCM and the zonally asymmetric elevated stratopause. J. Geophys. Res. Atmos. 2013, 118, 2241–2254. [Google Scholar] [CrossRef]
- García-Comas, M.; Funke, B.; López-Puertas, M.; González-Galindo, F.; Kiefer, M.; Höpfner, M. First detection of a brief mesoscale elevated stratopause in very early winter. Geophys. Res. Lett. 2020, 47, e2019GL086751. [Google Scholar] [CrossRef]
- Harvey, V.L.; Randall, C.E.; Goncharenko, L.; Becker, E.; France, J. On the upward extension of the polar vortices into the mesosphere. J. Geophys. Res. Atmos. 2018, 123, 9171–9191. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Efstathiou, M.N.; Christodoulakis, J. The lesson learned from the unprecedented ozone hole in the Arctic in 2020; A novel nowcasting tool for such extreme events. J. Atmos. Sol.-Terr. Phys. 2020, 207, 105330. [Google Scholar] [CrossRef]
- Lawrence, Z.D.; Perlwitz, J.; Butler, A.H.; Manney, G.L.; Newman, P.A.; Lee, S.H.; Nash, E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic Oscillation and ozone loss. J. Geoph. Res. Atmos. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Cracknell, A.P.; Tzanis, C. The exceptional ozone depletion over the Arctic in January–March 2011. Remote Sens. Lett. 2012, 3, 343–352. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, Z.; Liu, Y. The exceptionally strong and persistent Arctic stratospheric polar vortex in the winter of 2019–2020. Atmos. Ocean. Sci. Lett. 2021, 14, 100035. [Google Scholar] [CrossRef]
- Inness, A.; Chabrillat, S.; Flemming, J.; Huijnen, V.; Langenrock, B.; Nicolas, J.; Polichtchouk, I.; Razinger, M. Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis. J. Geophys. Res. Atmos. 2020, 125, e2020JD033563. [Google Scholar] [CrossRef]
- Anstey, J.A.; Banyard, T.P.; Butchart, N.; Coy, L.; Newman, P.A.; Osprey, S.; Wright, C.J. Prospect of increased disruption to the QBO in a changing climate. Geophys. Res. Lett. 2021, 48, e2021GL093058. [Google Scholar] [CrossRef]
- MERRA-2: The Goddard Earth Sciences Data and Information Services Center. Available online: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (accessed on 15 July 2021).
- Livesey, N.J.; Read, W.G.; Wagner, P.A.; Froidevaux, L.; Lambert, A.; Manney, G.L.; Millán Valle, L.F.; Pumphrey, H.C.; Santee, M.L.; Schwartz, M.J.; et al. EOS MLS Version 4.2x–3.1 Level 2 Data Quality and Description Document, Tech. Rep., Jet Propulsion Laboratory. 2018. Available online: https://mls.jpl.nasa.gov/data/v4-2_data_quality_document.pdf (accessed on 12 January 2022).
- Schwartz, M.; Livesey, N.; Read, W. MLS/Aura Level 2 Geopotential Height V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) 2015a. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/ML2GPH_004/summary/ (accessed on 15 July 2021).
- Schwartz, M.; Livesey, N.; Read, W. MLS/Aura Level 2 Temperature V004, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) 2015b. 2015. Available online: https://disc.gsfc.nasa.gov/datasets/ML2T_004/summary?keywords=temperature (accessed on 15 December 2021).
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- GDAS–CPC: The National Oceanic and Atmospheric Administration National Centers for Environmental Prediction, Global Data Assimilation System–Climate Prediction Center (NOAA NCEP GDAS–CPC). Stratosphere-Troposphere Monitoring. Available online: https://www.cpc.ncep.noaa.gov/products/stratosphere/strat-trop/ (accessed on 15 December 2021).
- Karpetchko, A.; Kyrö, E.; Knudsen, B.M. Arctic and Antarctic polar vortices 1957–2002 as seen from the ERA-40 reanalyses. J. Geophys. Res. Atmos. 2005, 110, D21109. [Google Scholar] [CrossRef] [Green Version]
- Charney, J.G.; Drazin, P.G. Propagation of planetary-scale disturbances from the lower into the upper atmosphere. J. Geophys. Res. 1961, 66, 83–109. [Google Scholar] [CrossRef]
- Matsuno, T. Vertical propagation of stationary planetary waves in the winter Northern Hemisphere. J. Atmos. Sci. 1970, 27, 871–883. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Evtushevsky, O.; Shulga, V.; Milinevsky, G.; Klekociuk, A.; Andrienko, Y.; Han, W. Mid-Latitude mesospheric zonal wave 1 and wave 2 in recent boreal winters. Remote Sens. 2021, 13, 3749. [Google Scholar] [CrossRef]
- Smith, A.K. Observations of wave–wave interactions in the stratosphere. J. Atmos. Sci. 1983, 40, 2484–2496. [Google Scholar] [CrossRef] [Green Version]
- Wohltmann, I.; von der Gathen, P.; Lehmann, R.; Maturilli, M.; Deckelmann, H.; Manney, G.L.; Davies, J.; Tarasick, D.; Jepsen, N.; Kivi, R.; et al. Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020. Geophys. Res. Lett. 2020, 47, e2020GL089547. [Google Scholar] [CrossRef]
- Zhang, J.; Lin, D.; Bian, J.; Xuan, T.; Chen, H.; Bai, Z.; Wan, X.; Zheng, X.; Xia, X.; Lyn, D. Long-term ozone variability in the vertical structure and integrated column over the North China Plain: Results based on ozonesonde and Dobson measurements during 2001-2019. Environ. Res. Lett. 2021, 16, 074053. [Google Scholar] [CrossRef]
- Xia, Y.; Hu, Y.; Zhang, J.; Xie, F.; Tian, W. Record Arctic ozone loss in spring 2020 is likely caused by North Pacific warm sea surface temperature anomalies. Adv. Atmos. Sci. 2021, 38, 1723–1736. [Google Scholar] [CrossRef]
- Scheffler, J.; Ayarzagüena, B.; Orsolini, Y.J.; Langematz, U. Elevated stratopause events in the current and a future climate: A chemistry-climate model study. J. Atmos. Sol.-Terr. Phys. 2022, 227, 105804. [Google Scholar] [CrossRef]
- Kang, M.-J.; Chun, H.-Y. Contributions of equatorial waves and small-scale convective gravity waves to the 2019/20 quasi-biennial oscillation (QBO) disruption. Atmos. Chem. Phys. 2021, 21, 9839–9857. [Google Scholar] [CrossRef]
- Coy, L.; Newman, P.A.; Pawson, S.; Lait, L.R. Dynamics of the Disrupted 2015/16 quasi-biennial oscillation. J. Clim. 2017, 30, 5661–5674. [Google Scholar] [CrossRef]
- Dunkerton, T.J. The quasi-biennial oscillation of 2015–2016: Hiccup or death spiral? Geophys. Res. Lett. 2016, 43, 10547–10552. [Google Scholar] [CrossRef]
- Kang, M.-J.; Chun, H.-Y.; Garcia, R.R. Role of equatorial waves and convective gravity waves in the 2015/16 quasi-biennial oscillation disruption. Atmos. Chem. Phys. 2020, 20, 14669–14693. [Google Scholar] [CrossRef]
- Varotsos, C.; Sarlis, N.V.; Efstathiou, M.N. On the association between the recent episode of the quasi-biennial oscillation and the strong El Niño event. Theor. Appl. Climatol. 2018, 133, 569–577. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Evtushevsky, O.; Milinevsky, G.; Klekociuk, A.; Han, W.; Ivaniha, O.; Andrienko, Y.; Shulga, V.; Zhang, C. Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sens. 2022, 14, 1496. https://doi.org/10.3390/rs14061496
Shi Y, Evtushevsky O, Milinevsky G, Klekociuk A, Han W, Ivaniha O, Andrienko Y, Shulga V, Zhang C. Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing. 2022; 14(6):1496. https://doi.org/10.3390/rs14061496
Chicago/Turabian StyleShi, Yu, Oleksandr Evtushevsky, Gennadi Milinevsky, Andrew Klekociuk, Wei Han, Oksana Ivaniha, Yulia Andrienko, Valery Shulga, and Chenning Zhang. 2022. "Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter" Remote Sensing 14, no. 6: 1496. https://doi.org/10.3390/rs14061496
APA StyleShi, Y., Evtushevsky, O., Milinevsky, G., Klekociuk, A., Han, W., Ivaniha, O., Andrienko, Y., Shulga, V., & Zhang, C. (2022). Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sensing, 14(6), 1496. https://doi.org/10.3390/rs14061496