Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Landsat Data and Sentinel-2 Data
2.2.2. Sentinel-1 Data
2.2.3. Field Data and Agricultural Statistical Data
2.3. Methods
2.3.1. Time-Weighted Dynamic Time Warping (TWDTW) Method
2.3.2. Incorporating the TWDTW Method into Sugarcane Mapping in China
2.3.3. Separating Banana from Sugarcane
2.3.4. Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Rahman, E.M.; Ahmed, F.B. The application of remote sensing techniques to sugarcane (Saccharum spp. Hybrid) production: A review of the literature. Int. J. Remote Sens. 2008, 29, 3753–3767. [Google Scholar] [CrossRef]
- Lakshmanan, P.; Geijskes, R.J.; Aitken, K.S.; Grof, C.L.P.; Bonnett, G.D.; Smith, G.R. Sugarcane biotechnology: The challenges and opportunities. Vitr. Cell. Dev. Biol.-Plant 2005, 41, 345–363. [Google Scholar] [CrossRef]
- Brar, N.S.; Dhillon, B.S.; Saini, K.; Sharma, P. Agronomy of sugarbeet cultivation—A review. Agric. Rev. 2015, 36, 184–197. [Google Scholar] [CrossRef]
- Sindhu, R.; Gnansounou, E.; Binod, P.; Pandey, A. Bioconversion of sugarcane crop residue for value added products—An overview. Renew. Energy 2016, 98, 203–215. [Google Scholar] [CrossRef]
- Bordonal, R.d.O.; de Figueiredo, E.B.; Aguiar, D.A.; Adami, M.; Theodor Rudorff, B.F.; La Scala, N. Greenhouse gas mitigation potential from green harvested sugarcane scenarios in sao paulo state, Brazil. Biomass Bioenergy 2013, 59, 195–207. [Google Scholar] [CrossRef]
- Bordonal, R.d.O.; Lal, R.; Aguiar, D.A.; de Figueiredo, E.B.; Perillo, L.I.; Adami, M.; Theodor Rudorff, B.F.; La Scala, N. Greenhouse gas balance from cultivation and direct land use change of recently established sugarcane (Saccharum officinarum) plantation in South-Central Brazil. Renew. Sustain. Energy Rev. 2015, 52, 547–556. [Google Scholar] [CrossRef]
- Jaiswal, D.; De Souza, A.P.; Larsen, S.; LeBauer, D.S.; Miguez, F.E.; Sparovek, G.; Bollero, G.; Buckeridge, M.S.; Long, S.P. Brazilian sugarcane ethanol as an expandable green alternative to crude oil use. Nat. Clim. Change 2017, 7, 788–792. [Google Scholar] [CrossRef]
- Borjesson, P. Good or bad bioethanol from a greenhouse gas perspective—What determines this? Appl. Energy 2009, 86, 589–594. [Google Scholar] [CrossRef]
- Adami, M.; Theodor Rudorff, B.F.; Freitas, R.M.; Aguiar, D.A.; Sugawara, L.M.; Mello, M.P. Remote sensing time series to evaluate direct land use change of recent expanded sugarcane crop in brazil. Sustainability 2012, 4, 574–585. [Google Scholar] [CrossRef] [Green Version]
- Defante, L.R.; Vilpoux, O.F.; Sauer, L. Rapid expansion of sugarcane crop for biofuels and influence on food production in the first producing region of brazil. Food Policy 2018, 79, 121–131. [Google Scholar] [CrossRef]
- Ferreira, M.P.; Alves, D.S.; Shimabukuro, Y.E. Forest dynamics and land-use transitions in the brazilian atlantic forest: The case of sugarcane expansion. Reg. Environ. Chang. 2015, 15, 365–377. [Google Scholar] [CrossRef]
- Mello, F.F.C.; Cerri, C.E.P.; Davies, C.A.; Holbrook, N.M.; Paustian, K.; Maia, S.M.F.; Galdos, M.V.; Bernoux, M.; Cerri, C.C. Payback time for soil carbon and sugar-cane ethanol. Nat. Clim. Chang. 2014, 4, 605–609. [Google Scholar] [CrossRef]
- Loarie, S.R.; Lobell, D.B.; Asner, G.P.; Mu, Q.; Field, C.B. Direct impacts on local climate of sugar-cane expansion in brazil. Nat. Clim. Change 2011, 1, 105–109. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization of the United Nations (FAO). FAO Statistical Databases; FAO: Rome, Italy, 2020. [Google Scholar]
- Zhang, M.; Govindaraju, M. Sugarcane Production in China. In Sugarcane: Technology and Research; de Oliveira, A., Ed.; IntechOpen: London, UK, 2018; pp. 49–66. [Google Scholar]
- Lin, H.; Chen, J.; Pei, Z.; Zhang, S.; Hu, X. Monitoring sugarcane growth using envisat asar data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2572–2580. [Google Scholar] [CrossRef]
- Tan, Z.; Wu, L.; Ding, M.; Yang, X.; Ou, Z.; He, Y.; Kuang, Z. Study on the extraction of sugarcane planting areas from eos/modis data. Meteorol. Mon. 2007, 33, 76–81. [Google Scholar]
- Li, H.; Han, Y.; Chen, J. Capability of multidate radarsat-2 data to identify sugarcane lodging. J. Appl. Remote Sens. 2019, 13, 044514. [Google Scholar] [CrossRef]
- Som-ard, J.; Atzberger, C.; Izquierdo-Verdiguier, E.; Vuolo, F.; Immitzer, M. Remote sensing applications in sugarcane cultivation: A review. Remote Sens. 2021, 13, 4040. [Google Scholar] [CrossRef]
- Cechim Junior, C.; Johann, J.A.; Antunes, J.F.G. Mapping of sugarcane crop area in the parana state using landsat/tm/oli and irs/liss-3 images. Rev. Bras. Eng. Agric. E Ambient. 2017, 21, 427–432. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.A.; Scheyvens, H.; Shivakoti, B.R. An ensemble pansharpening approach for finer-scale mapping of sugarcane with landsat 8 imagery. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 218–225. [Google Scholar] [CrossRef]
- Mulyono, S.; Nadirah. Identifying sugarcane plantation using landsat-8 images with support vector machines. In Proceedings of the 2nd International Conference of Indonesian Society for Remote Sensing, Yogyakarta, Indonesia, 17–19 October 2016; Volume 47. [Google Scholar]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Xavier, A.C.; Rudorff, B.F.T.; Berka, L.M.S.; Moreira, M.A. Multi-temporal analysis of modis data to classify sugarcane crop. Int. J. Remote Sens. 2006, 27, 755–768. [Google Scholar] [CrossRef]
- El Hajj, M.; Begue, A.; Guillaume, S.; Martine, J.-F. Integrating spot-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices—The case of sugarcane harvest on reunion island. Remote Sens. Environ. 2009, 113, 2052–2061. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Murden, D. Evaluating high resolution spot 5 satellite imagery for crop identification. Comput. Electron. Agric. 2011, 75, 347–354. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, J.; Wang, J.; Zhang, K.; Kuang, Z.; Zhong, S.; Song, X. Object-oriented classification of sugarcane using time-series middle-resolution remote sensing data based on adaboost. PLoS ONE 2015, 10, e0142069. [Google Scholar] [CrossRef] [Green Version]
- Verma, A.K.; Garg, P.K.; Prasad, K.S.H. Sugarcane crop identification from liss iv data using isodata, mlc, and indices based decision tree approach. Arab. J. Geosci. 2017, 10, 16. [Google Scholar] [CrossRef]
- Li, H.; Chen, J.; Liang, S.; Li, Q. Sugarcane mapping in tillering period by quad-polarization terrasar-x data. IEEE Geosci. Remote Sens. Lett. 2015, 12, 993–997. [Google Scholar]
- Baghdadi, N.; Boyer, N.; Todoroff, P.; El Hajj, M.; Begue, A. Potential of sar sensors terrasar-x, asar/envisat and palsar/alos for monitoring sugarcane crops on reunion island. Remote Sens. Environ. 2009, 113, 1724–1738. [Google Scholar] [CrossRef]
- Jiang, H.; Li, D.; Jing, W.; Xu, J.; Huang, J.; Yang, J.; Chen, S. Early season mapping of sugarcane by applying machine learning algorithms to sentinel-1a/2 time series data: A case study in zhanjiang city, China. Remote Sens. 2019, 11, 861. [Google Scholar] [CrossRef] [Green Version]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Application of Machine Learning on Remote Sensing Data for Sugarcane Crop Classification: A Review. In ICT Analysis and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 539–555. [Google Scholar]
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring us agriculture: The us department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Wang, S.; Azzari, G.; Lobell, D.B. Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques. Remote Sens. Environ. 2019, 222, 303–317. [Google Scholar] [CrossRef]
- Theodor Rudorff, B.F.; de Aguiar, D.A.; da Silva, W.F.; Sugawara, L.M.; Adami, M.; Moreira, M.A. Studies on the rapid expansion of sugarcane for ethanol production in sao paulo state (Brazil) using landsat data. Remote Sens. 2010, 2, 1057–1076. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos Luciano, A.C.; Araujo Picoli, M.C.; Rocha, J.V.; Junqueira Franco, H.C.; Sanches, G.M.; Lima Verde Leal, M.R.; le Maire, G. Generalized space-time classifiers for monitoring sugarcane areas in brazil. Remote Sens. Environ. 2018, 215, 438–451. [Google Scholar] [CrossRef]
- Dos Santos Luciano, A.C.; Araujo Picoli, M.C.; Rocha, J.V.; Duft, D.G.; Camargo Lamparelli, R.A.; Lima Verde Leal, M.R.; Le Maire, G. A generalized space-time obia classification scheme to map sugarcane areas at regional scale, using landsat images time-series and the random forest algorithm. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 127–136. [Google Scholar] [CrossRef]
- Dong, J.; Liu, W.; Han, W.; Xiang, K.; Lei, T.; Yuan, W. A phenology-based method for identifying the planting fraction of winter wheat using moderate-resolution satellite data. Int. J. Remote Sens. 2020, 41, 6892–6913. [Google Scholar] [CrossRef]
- Massey, R.; Sankey, T.T.; Congalton, R.G.; Yadav, K.; Thenkabail, P.S.; Ozdogan, M.; Meador, A.J.S. Modis phenology-derived, multi-year distribution of conterminous us crop types. Remote Sens. Environ. 2017, 198, 490–503. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Liu, L.; Wu, X.; Qin, Y.; Steiner, J.L.; Dong, J. Mapping sugarcane plantation dynamics in guangxi, china, by time series sentinel-1, sentinel-2 and landsat images. Remote Sens. Environ. 2020, 247, 111951. [Google Scholar] [CrossRef]
- Wardlow, B.D.; Egbert, S.L.; Kastens, J.H. Analysis of time-series modis 250 m vegetation index data for crop classification in the US central great plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Fu, Y.; Wang, J.; Tian, H.; Fu, S.; Niu, Z.; Han, W.; Zheng, Y.; Huang, J.; Yuan, W. Early-season mapping of winter wheat in china based on landsat and sentinel images. Earth Syst. Sci. Data 2020, 12, 3081–3095. [Google Scholar] [CrossRef]
- Maus, V.; Camara, G.; Cartaxo, R.; Sanchez, A.; Ramos, F.M.; de Queiroz, G.R. A time-weighted dynamic time warping method for land-use and land-cover mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3729–3739. [Google Scholar] [CrossRef]
- Pan, B.; Zheng, Y.; Shen, R.; Ye, T.; Zhao, W.; Dong, J.; Ma, H.; Yuan, W. High resolution distribution dataset of double-season paddy rice in china. Remote Sens. 2021, 13, 4609. [Google Scholar] [CrossRef]
- Petitjean, F.; Inglada, J.; Gancarski, P. Satellite image time series analysis under time warping. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3081–3095. [Google Scholar] [CrossRef]
- Guan, X.; Huang, C.; Liu, G.; Meng, X.; Liu, Q. Mapping rice cropping systems in vietnam using an ndvi-based time-series similarity measurement based on dtw distance. Remote Sens. 2016, 8, 19. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Bijker, W. Vegetable classification in indonesia using dynamic time warping of sentinel-1a dual polarization sar time series. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 268–280. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. National Statistical Yearbook 2017, 2018, 2019, 2020; China Statistics Press: Beijing, China, 2017–2020.
- Eilers, P.H.C. A perfect smoother. Anal. Chem. 2003, 75, 3631–3636. [Google Scholar] [CrossRef]
- Kong, D.; Zhang, Y.; Gu, X.; Wang, D. A robust method for reconstructing global modis evi time series on the google earth engine. ISPRS J. Photogramm. Remote Sens. 2019, 155, 13–24. [Google Scholar] [CrossRef]
- Abramov, S.; Rubel, O.; Lukin, V.; Kozhemiakin, R.; Kussul, N.; Shelestov, A.; Lavreniuk, M. Speckle reducing for sentinel-1 sar data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 2353–2356. [Google Scholar]
- Sakoe, H.; Chiba, S. Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 1978, 26, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Theodor Rudorff, B.F.; Berka, L.M.S.; Moreira, M.A.; Duarte, V.; Xavier, A.C.; Rosa, V.G.C.; Shimabukuro, Y.E. Imagens de satélite no mapeamento e estimativa de área de cana-de-açúcar em São Paulo: Ano-safra 2003/04. Agric. São Paulo 2005, 52, 21–39. [Google Scholar]
- Jin, Z.; Azzari, G.; You, C.; Di Tommaso, S.; Aston, S.; Burke, M.; Lobell, D.B. Smallholder maize area and yield mapping at national scales with google earth engine. Remote Sens. Environ. 2019, 228, 115–128. [Google Scholar] [CrossRef]
- Song, C.; Woodcock, C.E.; Seto, K.C.; Lenney, M.P.; Macomber, S.A. Classification and change detection using landsat tm data: When and how to correct atmospheric effects? Remote Sens. Environ. 2001, 75, 230–244. [Google Scholar] [CrossRef]
- Gao, F.; Anderson, M.C.; Zhang, X.; Yang, Z.; Alfieri, J.G.; Kustas, W.P.; Mueller, R.; Johnson, D.M.; Prueger, J.H. Toward mapping crop progress at field scales through fusion of landsat and modis imagery. Remote Sens. Environ. 2017, 188, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Hazaymeh, K.; Hassan, Q.K. Spatiotemporal image-fusion model for enhancing the temporal resolution of landsat-8 surface reflectance images using modis images. J. Appl. Remote Sens. 2015, 9, 96095. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Ju, J.; Lewis, P.; Schaaf, C.; Gao, F.; Hansen, M.; Lindquist, E. Multi-temporal modis-landsat data fusion for relative radiometric normalization, gap filling, and prediction of landsat data. Remote Sens. Environ. 2008, 112, 3112–3130. [Google Scholar] [CrossRef]
Province | Reference | Map | Producer’s Accuracy | User’s Accuracy | Overall Accuracy | ||
---|---|---|---|---|---|---|---|
Sugarcane | Non-Sugarcane | ||||||
SR | GuangXi (GX) | Sugarcane | 980 | 138 | 87.66% | 89.25% | 94.46% |
Non-sugarcane | 118 | 3385 | 96.63% | 96.08% | |||
Yunnan (YN) | Sugarcane | 158 | 26 | 85.87% | 88.27% | 89.32% | |
Non-sugarcane | 21 | 235 | 91.80% | 90.04% | |||
Guangdong (GD) | Sugarcane | 87 | 15 | 85.29% | 86.14% | 90.43% | |
Non-sugarcane | 14 | 187 | 93.03% | 92.57% | |||
Hainan (HN) | Sugarcane | 73 | 19 | 79.35% | 79.35% | 87.33% | |
Non-sugarcane | 19 | 189 | 90.87% | 90.87% | |||
TOA | GuangXi (GX) | Sugarcane | 965 | 153 | 86.31% | 87.89% | 93.81% |
Non-sugarcane | 133 | 3370 | 96.20% | 95.66% | |||
Yunnan (YN) | Sugarcane | 156 | 28 | 84.78% | 87.64% | 88.64% | |
Non-sugarcane | 22 | 234 | 91.41% | 89.31% | |||
Guangdong (GD) | Sugarcane | 85 | 17 | 83.33% | 83.33% | 88.78% | |
Non-sugarcane | 17 | 184 | 91.54% | 91.54% | |||
Hainan (HN) | Sugarcane | 75 | 17 | 81.52% | 75.76% | 86.33% | |
Non-sugarcane | 24 | 184 | 88.46% | 91.54% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Li, Z.; Pan, B.; Lin, S.; Dong, J.; Li, X.; Yuan, W. Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sens. 2022, 14, 1274. https://doi.org/10.3390/rs14051274
Zheng Y, Li Z, Pan B, Lin S, Dong J, Li X, Yuan W. Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sensing. 2022; 14(5):1274. https://doi.org/10.3390/rs14051274
Chicago/Turabian StyleZheng, Yi, Zhuoting Li, Baihong Pan, Shangrong Lin, Jie Dong, Xiangqian Li, and Wenping Yuan. 2022. "Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets" Remote Sensing 14, no. 5: 1274. https://doi.org/10.3390/rs14051274
APA StyleZheng, Y., Li, Z., Pan, B., Lin, S., Dong, J., Li, X., & Yuan, W. (2022). Development of a Phenology-Based Method for Identifying Sugarcane Plantation Areas in China Using High-Resolution Satellite Datasets. Remote Sensing, 14(5), 1274. https://doi.org/10.3390/rs14051274