Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China
Abstract
:1. Introduction
2. Climate Characteristic of AOD over the Tarim Basin
3. Model Settings and Validation
3.1. WRF-Chem Model
3.2. Observations
3.3. Model Validation
4. Simulation Analysis and Discussion
4.1. Synoptic Variations during the Dust Storm
4.2. Daily Variation Characteristics of the Dust Radiative Effect
4.3. Direct Radiative Effect Induced by Dust during the Daytime
4.4. Direct Radiative Effect Induced by Dust during the Nighttime
4.5. Regional Average Dust Radiative Effect
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christopher, S.A.; Wang, J.; Ji, Q.; Tasy, S.C. Estimation of diurnal shortwave dust aerosol radiative forcing during PRIDE. J. Geophys. Res. Atmos. 2003, 108, 8596. [Google Scholar] [CrossRef]
- Dey, S.; Tripathi, S.N.; Singh, R.P.; Holben, B.N. Influence of dust storms on the aerosol optical properties over the Indo-Gangetic basin. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Duce, R.A. Sources, distributions, and fluxes of mineral aerosols and their relationship to climate. Aerosol Clim. 1995, 17, 43–72. [Google Scholar]
- Zhang, D.E. Preliminary analysis of the weather climatology of dust fall in China since the historical period. Chin. Sci. Chem. Biol. Agron. Med. Geol. 1984, 14, 88–98. (In Chinese) [Google Scholar]
- Zhou, M.; Chen, Z.; Huang, R.; Wang, Q.; Arimoto, R.; Parungo, F.; Lenschow, D.; Okada, K.; Wu, P. Effects of two dust storms on solar radiation in the Beijing-Tianjin area. Geophys. Res. Lett. 1994, 21, 2697–2700. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Tang, J.; Gu, F. Thermal diffusion characteristics of atmosphere-particle two phase flow in dust storm. Heat Mass Transf. 2005, 41, 306–314. [Google Scholar] [CrossRef]
- Huang, J.; Minnis, P.; Lin, B.; Wang, T.; Yi, Y.; Hu, Y.; Sun-Mack, S.; Ayers, K. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett. 2006, 33, 272–288. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Zhang, L. A preliminary review of the radiative properties of dust aerosols and their observation methods. Arid Weather 2007, 25, 68–73. (In Chinese) [Google Scholar]
- Crutzen, P.J.; Ramanathan, V. The parasol personal effect on climate. Science 2003, 2003, 1679–1681. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Rudich, Y.; Lahav, R. Desert dust suppressing precipitation: A possible desertification feedback loop. Proc. Natl. Acad. Sci. USA 2001, 98, 5975–5980. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.H. Glacial-interglacial CO2 change: The Iron Hypothesis. Paleoceanography 1990, 5, 1–13. [Google Scholar] [CrossRef]
- Watson, A.J.; Bakker, D.C.E.; Ridgwell, A.J.; Boyd, P.W.; Law, C.S. Effect of iron supply on Southern Ocean CO2 uptake and implications for glacial atmospheric CO2. Nature 2000, 407, 730–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Review on sources and transport of loess materials on the Chinese loess plateau. Quat. Sci. 2007, 27, 181–186. [Google Scholar]
- Garratt, J.R. Review: The atmospheric boundary layer. Earth Sci. Rev. 1994, 37, 89–134. [Google Scholar] [CrossRef]
- Meng, L.; Yang, X.H.; Zhao, T.L.; He, Q.; Lu, H.; Mamtimin, A.; Huo, W.; Yang, F.; Liu, C. Modeling study on three-dimensional distribution of dust aerosols during a dust storm over the Tarim Basin, Northwest China. Atmos. Res. 2018, 218, 285–295. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S. Atmospheric boundary layer structure and land surface process characteristics in the Northwest Arid Zone during summer. J. Meteorol. 2008, 66, 599–608. (In Chinese) [Google Scholar]
- Indoitu, R.; Orlovsky, L.; Orlovsky, N. Dust storms in Central Asia: Spatial and temporal variations. J. Arid Environ. 2012, 85, 62–70. [Google Scholar] [CrossRef]
- Xu, X.D.; Wang, Y.J.; Wei, W.S.; Zhao, T.L.; Xu, H.X. Summer precipitation process and atmospheric water cycle over Tarim Basin under specific large terrain background. Desert Oasis Meteor 2014, 8, 1–11. (In Chinese) [Google Scholar]
- Perlwitz, J.; Tegen, I.; Miller, R.L. Interactive soil dust aerosol model in the GISS GCM: 1. Sensitivity of the soil dust cycle to radiative properties of soil dust aerosols. J. Geophys. Res. Atmos. 2001, 106, 18167–18192. [Google Scholar] [CrossRef]
- Liao, H.; Seinfeld, J.H. Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res. Atmos. 1998, 103, 31637–31645. [Google Scholar] [CrossRef]
- Perrone, M.R.; Tafuro, A.M.; Kinne, S. Dust layer effects on the atmospheric radiative budget and heating rate profiles. Atmos. Environ. 2012, 59, 344–354. [Google Scholar] [CrossRef]
- Peris-Ferrús, C.; Gómez-Amo, J.L.; Marcos, C.; Freile-Aranda, M.D.; Utrillas, M.P.; Martínez-Lozano, J.A. Heating rate profiles and radiative forcing due to a dust storm in the Western Mediterranean using satellite observations. Atmos. Environ. 2017, 160, 142–153. [Google Scholar] [CrossRef]
- Patel, P.N.; Kumar, R. Estimation of Aerosol Characteristics and Radiative Forcing during Dust Events over Dehradun. Aerosol Air Qual. Res. 2015, 15, 2082–2093. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, D.; Kaskaoutis, D.G. Impact of Two Intense Dust Storms on Aerosol Characteristics and Radiative Forcing over Patiala, Northwestern India. Adv. Meteorol. 2014, 2012, 978–988. [Google Scholar] [CrossRef] [Green Version]
- Sokolik, I.N.; Winker, D.M.; Bergametti, G.; Gillette, D.A.; Carmichael, G.; Kaufman, Y.J.; Gomes, L.; Schuetz, L.; Penner, J.E. Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. J. Geophys. Res. Atmos. 2001, 106, 18015–18027. [Google Scholar] [CrossRef]
- Solomon, S.; Qin, D.; Manning, M.; Chen, Z.; Marquis, M.; Avery, K.; Alley, R.B.; Berntsen, T.; Bindoff, N.L.; Chidthaisong, A.; et al. Climate Change 2001: The Physical Science Basis. Contribution of working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Intergov. Panel Clim. Change Clim. Change 2001, 996, 95–123. [Google Scholar]
- IPCC. Climate Change 2007: The Physical Science Basis by IPCC WG I; Cambridge University Press: Cambridge, UK, 2007; Volume 785. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis by IPCC WG I; Cambridge University Press: Cambridge, UK, 2013; Volume 1535. [Google Scholar]
- Lingo, A.; Ackerman, T.P.; Allan, R.P.; Kassianov, E.I.; McFarlane, S.A.; Robinson, G.J.; Barnard, J.C.; Miller, M.A.; Harries, J.E.; Russell, J.E.; et al. Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophys. Res. Lett. 2006, 33, 409–421. [Google Scholar]
- Zhao, C.; Liu, X.; Leung, L.R.; Johnson, B.; Mcfarlane, S.A.; Gustafson, W.I.; Fast, J.D.; Easter, R. The spatial distribution of mineral dust and its shortwave radiative forcing over North Africa: Modeling sensitivities to dust emissions and aerosol size treatments. Atmos. Chem. Phys. 2010, 10, 8821–8838. [Google Scholar] [CrossRef] [Green Version]
- Jose, S.; Gharai, B.; Rao, P.V.N.; Dutt, C.S.B. Satellite-based shortwave aerosol radiative forcing of dust storm over the Arabian Sea. Atmos. Sci. Lett. 2016, 17, 43–50. [Google Scholar] [CrossRef]
- Dufresne, J.L.; Gautier, C.; Ricchiazzi, P.; Fouquart, Y. Longwave Scattering Effects of Mineral Aerosols. J. Atmos. Sci. 2002, 59, 1959–1966. [Google Scholar] [CrossRef]
- Wang, H.; Shi, G.Y.; Zhu, J.; Chen, B.; Che, H.Z.; Zhao, T.L. Case study of longwave contribution to dust radiative effects over East Asia. Sci. Bull. 2013, 58, 3673–3681. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Zhao, C.; Qian, Y.; Leung, R.; Huang, J.P.; Huang, Z.W.; Bi, J.; Zhang, W.; Shi, J.; Yang, L.; et al. Regional modeling of dust mass balance and radiative forcing over East Asia using WRF-Chem. Aeolian Res. 2014, 15, 15–30. [Google Scholar] [CrossRef]
- Zhang, T.H.; Liao, H.; Chang, W.Y. Assessment of direct radiative forcing of dust aerosols in China based on International Comparison of Atmospheric Chemistry-Climate Models (ICPAC) model data. Atmos. Sci. 2016, 40, 1242–1260. (In Chinese) [Google Scholar]
- Cheng, T.T.; Lu, D.R.; Xu, Y.F. Radiative forcing of dust aerosols in the Hunsandak Sands. Highl. Meteorol. 2005, 24, 920–926. (In Chinese) [Google Scholar]
- Chen, S.Y.; Huang, J.P.; Zhao, C.; Qian, Y.; Leung, R.; Yang, B. Modeling the transport and radiative forcing of Taklimakan dust over the Tibetan Plateau: A case study in the summer of 2006. J. Geophys. Res. Atmos. 2013, 118, 797–812. [Google Scholar] [CrossRef]
- Huang, J.; Fu, Q.; Su, J.; Tang, Q.; Minnis, P.; Hu, Y.; Yi, Y.; Zhao, Q. Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys. 2009, 9, 5967–6001. [Google Scholar] [CrossRef]
- Chen, S.; Huang, J.; Kang, L.; Wang, H.; Ma, X.; He, Y.; Yuan, T.; Yang, B.; Huang, Z.; Zhang, G. Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts: Comparison of measurements and model results. Atmos. Chem. Phys. 2017, 17, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.Q.; Li, J.L.; He, Q.; Zhao, Z.J. Spatiotemporal distribution of AOD in southern Xinjiang and meteorological influencing factors. Acta Sci. Circumstantiae 2022, 42. (In Chinese) [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; David, O.G.; Dale, B.; Wang, W.; Jordan, G.P. A Description of the Advanced Research WRF Version 2. Ncar Tech. 2018, 113, 7–25. [Google Scholar]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; Mckeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled ‘online’ chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Werner, M.; Kryza, M.; Guzikowski, J. Can Data Assimilation of Surface PM2.5 and Satellite AOD Improve WRF-Chem Forecasting? A Case Study for Two Scenarios of Particulate Air Pollution Episodes in Poland. Remote Sens. 2019, 11, 2364. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, Y.J.; Tanre, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 51-17. [Google Scholar] [CrossRef]
- Eibedingil, I.G.; Gill, T.E.; Pelt, R.; Tong, D.Q. Comparison of Aerosol Optical Depth from MODIS Product Collection 6.1 and AERONET in the Western United States. Remote Sens. 2021, 13, 2316. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Zhao, Z.; Zhu, L. Extracting Taklimakan Dust Parameters from AIRS with Artificial Neural Network Method. Remote Sens. 2019, 11, 2931. [Google Scholar] [CrossRef] [Green Version]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Aerosol properties over bright-reflecting source regions. IEEE Trans. Geosci. Remote Sens. 2004, 42, 557–569. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep Blue Retrievals of Asian Aerosol Properties during ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Meng, L.; Yang, X.H.; Zhao, T.L.; He, Q.; Mamtimin, A.; Wang, M.; Huo, W.; Yang, F.; Zhou, C.; Pan, H. Simulated regional transport structures and budgets of dust aerosols during a typical springtime dust storm in the Tarim Basin, Northwest China. Atmos. Res. 2020, 238, 104892. [Google Scholar] [CrossRef]
- Zhou, Y.; Savijarvi, H. The effect of aerosols on long wave radiation and global warming. Atmos. Res. 2014, 135–136, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Li, J.; Xia, X.; Zhang, R. Investigation of direct radiative effects of aerosols in dust storm season over East Asia with an online coupled regional climate-chemistry-aerosol model. Atmos. Environ. 2012, 54, 688–699. [Google Scholar] [CrossRef]
- Xie, X.; Liu, X.; Che, H.; Xie, X.; Wang, H.; Li, J.; Shi, Z.; Liu, Y. Modeling East Asian Dust and Its Radiative Feedbacks in CAM4-BAM. J. Geophys. Res. Atmos. 2018, 123, 1079–1096. [Google Scholar] [CrossRef]
- Quijano, A.L.; Sokolik, I.N.; Toon, O.B. Radiative heating rates and direct radiative forcing by mineral dust in cloudy atmospheric conditions. J. Geophys. Res. Atmos. 2000, 105, 12207–12219. [Google Scholar] [CrossRef] [Green Version]
Physical Parameter | Namelist Variable | Model/Scheme |
---|---|---|
Dust emission scheme | dust_opt | GOCART |
Land surface | sf_surface_physics | Noah land-surface model |
PBL model | bl_pbl_physics | ACM2 scheme |
Surface similarity | sf_sfclay_physics | Pleim-Xiu |
Microphysics | mp_physics | Morrison 2-moment scheme |
Shortwave radiation | ra_sw_physics | RRTMG scheme |
Longwave radiation | ra_lw_physics | RRTMG scheme |
TOA | ATM | SUR | ||
---|---|---|---|---|
4−26 | Daytime | 0.40 | 2.44 | −2.04 |
Nighttime | −0.91 | −2.94 | 2.03 | |
4−27 | Daytime | 1.41 | 8.19 | −6.78 |
Nighttime | −0.60 | −11.80 | 11.19 | |
4−28 | Daytime | 3.97 | 34.92 | −30.95 |
Nighttime | −1.40 | −16.09 | 14.70 | |
4−29 | Daytime | 3.86 | 36.81 | −32.95 |
Nighttime | −2.88 | −15.88 | 13.00 | |
4−30 | Daytime | 1.71 | 25.75 | −24.04 |
Nighttime | −0.04 | −7.89 | 7.85 | |
5−1 | Daytime | 1.20 | 23.88 | −22.67 |
Nighttime | −2.44 | −10.13 | 7.69 |
Table 3a. The mean SW, LW, and net (SW + LW) DDREs (W m−2) within the TB at the top of the atmosphere (TOA), at the surface (SUR), and in the atmosphere (ATM) during the selected dust storm. | |||
TOA | ATM | SUR | |
SW | −1.29 | 33.99 | −35.28 |
LW | 1.56 | −12.27 | 13.83 |
Net | 0.27 | 21.72 | −21.45 |
Table 3b. Same as Table 3a, but for the daytime. Unit: Wm−2. | |||
TOA | ATM | SUR | |
SW | −1.52 | 39.44 | −40.96 |
LW | 3.89 | −14.97 | 18.86 |
Net | 2.37 | 24.47 | −22.10 |
Table 3c. Same as Table 3a, but for the nighttime. Unit: Wm−2. | |||
TOA | ATM | SUR | |
SW | 0 | 0 | 0 |
LW | −1.53 | −12.85 | 11.32 |
Net | −1.53 | −12.85 | 11.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, L.; Zhao, T.; He, Q.; Yang, X.; Mamtimin, A.; Wang, M.; Pan, H.; Huo, W.; Yang, F.; Zhou, C. Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sens. 2022, 14, 1167. https://doi.org/10.3390/rs14051167
Meng L, Zhao T, He Q, Yang X, Mamtimin A, Wang M, Pan H, Huo W, Yang F, Zhou C. Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sensing. 2022; 14(5):1167. https://doi.org/10.3390/rs14051167
Chicago/Turabian StyleMeng, Lu, Tianliang Zhao, Qing He, Xinghua Yang, Ali Mamtimin, Minzhong Wang, Honglin Pan, Wen Huo, Fan Yang, and Chenglong Zhou. 2022. "Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China" Remote Sensing 14, no. 5: 1167. https://doi.org/10.3390/rs14051167
APA StyleMeng, L., Zhao, T., He, Q., Yang, X., Mamtimin, A., Wang, M., Pan, H., Huo, W., Yang, F., & Zhou, C. (2022). Dust Radiative Effect Characteristics during a Typical Springtime Dust Storm with Persistent Floating Dust in the Tarim Basin, Northwest China. Remote Sensing, 14(5), 1167. https://doi.org/10.3390/rs14051167