Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal)
Abstract
:1. Introduction
1.1. Context
1.2. Advantages of VENµS Reflectance Products
1.3. Snow and Cloud Discrimination in Optical Remote Sensing
1.4. Aims
2. Study Area and Climate Settings
3. Materials and Methods
3.1. Materials
3.1.1. VENµS Level-2A Products
3.1.2. DEM Products
3.1.3. In-Situ Measurements
3.1.4. VENµS Cloud Mask “CLM_XS”
3.2. Methods
3.2.1. Slope Effect Correction
3.2.2. Reflectance Product Statistical Evaluation Strategy
3.2.3. Cloud Mask Processing
3.2.4. Cloud Mask Statistical Evaluation Strategy
3.2.5. SCA Outputs
4. Results
4.1. Producing Reflectance Maps from VENµS Images as a Proxy of Albedo Maps
4.1.1. Comparison of TopCos Products (HMA, SRTM) and CNES Products (SRE, FRE)
4.1.2. Difference between the Four Reflectance Products
4.1.3. Comparison of TopCos and CNES Products with Shortwave Albedo Measurements
- Temporal evolution
- Statistical comparison
4.1.4. Distribution of Reflectance Values according to the Correction Used
4.2. Cloud Mapping
4.2.1. Statistical Analysis of the CloudCov Product
4.2.2. Temporal Analysis
4.3. Snow Cover Area Mapping
4.3.1. Comparison of Snow Cover with Meteorological Data
4.3.2. Seasonal Evolution of SCA versus Cloud Cover at the Watershed Scale
5. Discussion
5.1. TopCos HMA Product
5.2. CloudCov Product
5.3. SCA Maps
6. Conclusions
- (i)
- No consistent benefits for assessing the spatio-temporal evolution of surface albedo are retrieved using a cosine radiometric correction enhanced by a fine 5 m DEM regarding the Gamma one carried out with 90 m SRTM by CNES. The CNES FRE product offers efficient results versus in situ measurements for albedo retrieval, because Gamma correction takes into account both direct and diffuse illumination contributions. The cosine correction based only on the direct illumination can induce higher values versus broad band albedo from ground data, even using a precise DEM intended to better reduce the radiometric slope effects.
- (ii)
- We obtained a significant improvement with the TopCos product as an enhancement for cloud cover mapping and satisfactory results for seasonal snow mapping. Our novelty is to compute a hybrid product by merging a radiometric index (NDVI) and a textural approach (Haralick energy matrix) to overtake the CNES initial cloud mask performance.
- (iii)
- Furthermore, SCA maps are also improved since they are obtained using the CloudCov mask.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | Metrics | SRE | FRE | TopCos HMA | TopCos SRTM |
---|---|---|---|---|---|
Pyramid | NSS RMSE | 0.55 | 0.64 | 0.64 | 0.50 |
NSS Bias | 0.64 | 0.79 | 0.79 | 0.64 | |
NSS STD | 0.47 | 0.53 | 0.53 | 0.47 | |
NSS R² | 0.95 | 0.93 | 0.93 | 0.95 | |
Changri Nup | NSS RMSE | 0.45 | 0.45 | 0.00 | 0.18 |
NSS Bias | 0.71 | 0.71 | 0.00 | 0.29 | |
NSS STD | 0.29 | 0.35 | 0.00 | 0.18 | |
NSS R² | 1.00 | 1.00 | 0.96 | 0.97 | |
South Col | NSS RMSE | 0.36 | 0.36 | 0.41 | 0.45 |
NSS Bias | 0.43 | 0.36 | 0.86 | 0.71 | |
NSS STD | 0.35 | 0.41 | 0.24 | 0.35 | |
NSS R² | 0.93 | 0.96 | 0.93 | 0.96 |
References
- Immerzeel, W.W.; Lutz, A.F.; Andrade, M.; Bahl, A.; Biemans, H.; Bolch, T.; Hyde, S.; Brumby, S.; Davies, B.J.; Elmore, A.C.; et al. Importance and vulnerability of the world’s water towers. Nature 2020, 577, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Azam, M.F.; Kargel, J.S.; Shea, J.M.; Nepal, S.; Haritashya, U.K.; Srivastava, S.; Maussion, F.; Qazi, N.; Chevallier, P.; Dimri, A.P.; et al. Glaciohydrology of the Himalaya-Karakoram. Science 2021, 373, eabf3668. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Savéan, M.; Delclaux, F.; Chevallier, P.; Wagnon, P.; Gonga-Saholiariliva, N.; Sharma, R.; Neppel, L.; Arnaud, Y. Water budget on the Dudh Koshi River (Nepal): Uncertainties on precipitation. J. Hydrol. 2015, 531, 850–862. [Google Scholar] [CrossRef]
- Mimeau, L.; Esteves, M.; Zin, I.; Jacobi, H.W.; Brun, F.; Wagnon, P.; Koirala, D.; Arnaud, Y. Quantification of different flow components in a high-altitude glacierized catchment (Dudh Koshi, Himalaya): Some cryospheric-related issues. Hydrol. Earth Syst. Sci. 2019, 23, 3969–3996. [Google Scholar] [CrossRef] [Green Version]
- Matthews, T.; Perry, L.B.; Koch, I.; Aryal, D.; Khadka, A.; Shrestha, D.; Abernathy, K.; Elmore, A.C.; Seimon, A.; Tait, A.; et al. Going to Extremes: Installing the World’s Highest Weather Stations on Mount Everest. Bull. Am. Meteorol. Soc. 2020, 101, E1870–E1890. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Maussion, F.; Scherer, D.; Mölg, T.; Collier, E.; Curio, J.; Finkelnburg, R. Precipitation seasonality and variability over the Tibetan Plateau as resolved by the high Asia reanalysis. J. Clim. 2014, 27, 1910–1927. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Shea, J.M.; Liu, S.; Azam, F.M.; Gao, Y.; Gruber, S.; Immerzeel, W.W.; Kulkarni, A.; Li, H.; Tahir, A.A.; et al. Status and Change of the Cryosphere in the Extended Hindu Kush Himalaya Region. In The Hindu Kush Himalaya Assessment; Wester, P., Mishra, A., Mukherji, A., Shrestha, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 209–255. [Google Scholar]
- Viviroli, D.; Archer, D.R.; Buytaert, W.; Fowler, H.J.; Greenwood, G.B.; Hamlet, A.F.; Huang, Y.; Koboltschnig, G.; Litaor, M.I.; López-Moreno, J.I.; et al. Climate change and mountain water resources: Overview and recommendations for research, management and policy. Hydrol. Earth Syst. Sci. 2011, 15, 471–504. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Grizonnet, M.; Bouchet, M.; Salgues, G.; Hagolle, O. Theia Snow collection: High-resolution operational snow cover maps from Sentinel-2 and Landsat-8 data. Earth Syst. Sci. Data 2019, 11, 493–514. [Google Scholar] [CrossRef] [Green Version]
- Eeckman, J.; Chevallier, P.; Boone, A.; Neppel, L.; De Rouw, A.; Delclaux, F.; Koirala, D. Providing a non-deterministic representation of spatial variability of precipitation in the Everest region. Hydrol. Earth Syst. Sci. Discuss. 2017, 21, 4879–4893. [Google Scholar] [CrossRef] [Green Version]
- Mimeau, L.; Esteves, M.; Jacobi, H.W.; Zin, I. Evaluation of gridded and in situ precipitation datasets on modeled glacio-hydrologic response of a small glacierized himalayan catchment. J. Hydrometeorol. 2019, 20, 1103–1121. [Google Scholar] [CrossRef]
- Bouchard, B.; Eeckman, J.; Dedieu, J.P.; Delclaux, F.; Chevallier, P.; Gascoin, S.; Arnaud, Y. On the interest of optical remote sensing for seasonal snowmelt parameterization, applied to the Everest Region (Nepal). Remote Sens. 2019, 11, 2598. [Google Scholar] [CrossRef] [Green Version]
- Pelto, M.; Panday, P.; Matthews, T.; Maurer, J.; Perry, L.B. Observations of Winter Ablation on Glaciers in the Mount Everest Region in 2020–2021. Remote Sens. 2021, 13, 2692. [Google Scholar] [CrossRef]
- Hagolle, O.; Huc, M.; Desjardins, C.; Auer, S.; Richter, R. MAJA Algorithm Theoretical Basis Document. Available online: https://zenodo.org/record/1209633 (accessed on 14 March 2020).
- Réflectance de surface Venus–THEIA-LAND. Available online: https://www.theia-land.fr/product/venus-2/ (accessed on 9 June 2021).
- Sirguey, P.; Mathieu, R.; Arnaud, Y. Subpixel monitoring of the seasonal snow cover with MODIS at 250 m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens. Environ. 2009, 113, 160–181. [Google Scholar] [CrossRef]
- Sirguey, P.; Still, H.; Cullen, N.J.; Dumont, M.; Arnaud, Y.; Conway, J.P. Reconstructing the mass balance of Brewster Glacier, New Zealand, using MODIS-derived glacier-wide albedo. Cryosphere 2016, 10, 2465–2484. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef] [Green Version]
- Barrou Dumont, Z.; Gascoin, S.; Hagolle, O.; Ablain, M.; Jugier, R.; Salgues, G.; Marti, F.; Dupuis, A.; Dumont, M.; Morin, S. Brief communication: Evaluation of the snow cover detection in the Copernicus High Resolution Snow & Ice Monitoring Service. Cryosphere 2021, 15, 4975–4980. [Google Scholar] [CrossRef]
- Dumont, M.; Gascoin, S. Optical Remote Sensing of Snow Cover. In Land Surface Remote Sensing in Continental Hydrology; Baghdadi, N., Zribi, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 115–137. ISBN 9781785481048. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the landsat thematic mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Warren, S.G. Optical properties of snow. Rev. Geophys. 1982, 20, 67. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Rittger, K.; McKenzie, C.; Slaughter, P.; Davis, R.E.; Dozier, J. Retrieval of subpixel snow covered area, grain size, and albedo from MODIS. Remote Sens. Environ. 2009, 113, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Notarnicola, C.; Duguay, M.; Moelg, N.; Schellenberger, T.; Tetzlaff, A.; Monsorno, R.; Costa, A.; Steurer, C.; Zebisch, M. Snow cover maps from MODIS images at 250 m resolution, part 1: Algorithm description. Remote Sens. 2013, 5, 110–126. [Google Scholar] [CrossRef] [Green Version]
- Dedieu, J.P.; Lessard-Fontaine, A.; Ravazzani, G.; Cremonese, E.; Shalpykova, G.; Beniston, M. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Sci. Total Environ. 2014, 493, 1267–1279. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Painter, T.H. Multispectral and hyperspectral remote sensing of alpine snow properties. Annu. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef] [Green Version]
- Gascoin, S.; Dumont, Z.B.; Deschamps-Berger, C.; Marti, F.; Salgues, G.; López-Moreno, J.I.; Revuelto, J.; Michon, T.; Schattan, P.; Hagolle, O. Estimating fractional snow cover in open terrain from Sentinel-2 using the normalized difference snow index. Remote Sens. 2020, 12, 2904. [Google Scholar] [CrossRef]
- Kokhanovsky, A.; Lamare, M.; Danne, O.; Brockmann, C.; Dumont, M.; Picard, G.; Arnaud, L.; Favier, V.; Jourdain, B.; Le Meur, E.; et al. Retrieval of Snow Properties from the Sentinel-3 Ocean and Land Colour Instrument. Remote Sens. 2019, 11, 2280. [Google Scholar] [CrossRef] [Green Version]
- Buhler, Y.; Meier, L.; Meister, R. Continuous, High Resolution Snow Surface Type Mapping in High Alpine Terrain Using WorldView-2 Data. Available online: https://www.researchgate.net/publication/267859153_Continuous_high_resolution_snow_surface_type_mapping_in_high_alpine_terrain_using_WorldView-2_data (accessed on 10 November 2021).
- Marchane, A.; Jarlan, L.; Hanich, L.; Boudhar, A.; Gascoin, S.; Tavernier, A.; Filali, N.; Le Page, M.; Hagolle, O.; Berjamy, B. Assessment of daily MODIS snow cover products to monitor snow cover dynamics over the Moroccan Atlas mountain range. Remote Sens. Environ. 2015, 160, 72–86. [Google Scholar] [CrossRef]
- Baba, M.W.; Gascoin, S.; Hagolle, O.; Bourgeois, E.; Desjardins, C.; Dedieu, G. Evaluation of Methods for Mapping the Snow Cover Area at High Spatio-Temporal Resolution with VEN µ S. Remote Sens. 2020, 12, 3058. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, S.; Woodcock, C.E. Improvement and expansion of the Fmask algorithm: Cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sens. Environ. 2015, 159, 269–277. [Google Scholar] [CrossRef]
- Melchiorre, A.; Boschetti, L.; Roy, D.P. Global evaluation of the suitability of MODIS-Terra detected cloud cover as a proxy for Landsat 7 cloud conditions. Remote Sens. 2020, 12, 202. [Google Scholar] [CrossRef] [Green Version]
- Stillinger, T.; Roberts, D.A.; Collar, N.M.; Dozier, J. Cloud Masking for Landsat 8 and MODIS Terra Over Snow-Covered Terrain: Error Analysis and Spectral Similarity Between Snow and Cloud. Water Resour. Res. 2019, 55, 6169–6184. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Hall, D.K.; Riggs, G.A.; Digirolamo, N.E.; Román, M.O. Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record. Hydrol. Earth Syst. Sci. 2019, 23, 5227–5241. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Wang, J.; Shi, J.; Cheng, G.; Yao, L.; Sun, W. Distinguishing Cloud and Snow in Satellite Images via Deep Convolutional Network. IEEE Geosci. Remote Sens. Lett. 2017, 14, 1785–1789. [Google Scholar] [CrossRef]
- Marais, W.J.; Holz, R.E.; Reid, J.S.; Willett, R.M. Leveraging spatial textures, through machine learning, to identify aerosols and distinct cloud types from multispectral observations. Atmos. Meas. Tech. 2020, 13, 5459–5480. [Google Scholar] [CrossRef]
- Xia, M.; Li, Y.; Zhang, Y.; Weng, L.; Liu, J. Cloud/snow recognition of satellite cloud images based on multiscale fusion attention network. J. Appl. Remote Sens. 2020, 14, 32609. [Google Scholar] [CrossRef]
- Fang, Z.; Ji, W.; Wang, X.; Li, L.; Li, Y. Automatic cloud and snow detection for GF-1 and PRSS-1 remote sensing images. J. Appl. Remote Sens. 2021, 15, 24516. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Maussion, F.; Butenko, A.; Champollion, N.; Dusch, M.; Eis, J.; Fourteau, K.; Gregor, P.; Jarosch, A.H.; Landmann, J.; Oesterle, F.; et al. The Open Global Glacier Model (OGGM) v1.1. Geosci. Model Dev. 2019, 12, 909–931. [Google Scholar] [CrossRef] [Green Version]
- Gardner, A.S.; Sharp, M.J. A review of snow and ice albedo and the development of a new physically based broadband albedo parameterization. J. Geophys. Res. 2010, 115, F01009. [Google Scholar] [CrossRef]
- Izeboud, M.; Lhermitte, S.; Van Tricht, K.; Lenaerts, J.T.M.; Van Lipzig, N.P.M.; Wever, N. The Spatiotemporal Variability of Cloud Radiative Effects on the Greenland Ice Sheet Surface Mass Balance. Geophys. Res. Lett. 2020, 47. [Google Scholar] [CrossRef]
- Wagnon, P.; Vincent, C.; Arnaud, Y.; Berthier, E.; Vuillermoz, E.; Gruber, S.; Ménégoz, M.; Gilbert, A.; Dumont, M.; Shea, J.M.; et al. Seasonal and annual mass balances of Mera and Pokalde glaciers (Nepal Himalaya) since 2007. Cryosphere 2013, 7, 1769–1786. [Google Scholar] [CrossRef] [Green Version]
- Perry, L.B.; Matthews, T.; Guy, H.; Koch, I.; Khadka, A.; Elmore, A.C.; Shrestha, D.; Tuladhar, S.; Baidya, S.K.; Maharjan, S.; et al. Precipitation Characteristics and Moisture Source Regions on Mt. Everest in the Khumbu, Nepal. One Earth 2020, 3, 594–607. [Google Scholar] [CrossRef]
- Khadka, A.; Matthews, T.; Perry, L.B.; Koch, I.; Wagnon, P.; Shrestha, D.; Sherpa, T.C.; Aryal, D.; Tait, A.; Sherpa, T.G.; et al. Weather on Mount Everest during the 2019 summer monsoon. Weather 2021, 76, 205–207. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys. Res. Lett. 2006, 33, L08405. [Google Scholar] [CrossRef] [Green Version]
- Hagolle, O.; Huc, M.; Pascual, D.V.; Dedieu, G. A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENµS, LANDSAT and SENTINEL-2 images. Remote Sens. Environ. 2010, 114, 1747–1755. [Google Scholar] [CrossRef] [Green Version]
- Ferrier, P.; Crebassol, P.; Dedieu, G.; Hagolle, O.; Meygret, A.; Tinto, F.; Yaniv, Y.; Herscovitz, J. VENµS (Vegetation and environment monitoring on a new micro satellite). In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 3736–3739. [Google Scholar]
- Meyer, P.; Itten, K.I.; Kellenberger, T.; Sandmeier, S.; Sandmeier, R. Radiometric corrections of topographically induced effects on Landsat TM data in an alpine environment. ISPRS J. Photogramm. Remote Sens. 1993, 48, 17–28. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-based atmospheric corrections–Revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1036. [Google Scholar]
- Naegeli, K.; Damm, A.; Huss, M.; Wulf, H.; Schaepman, M.; Hoelzle, M. Cross-Comparison of Albedo Products for Glacier Surfaces Derived from Airborne and Satellite (Sentinel-2 and Landsat 8) Optical Data. Remote Sens. 2017, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Lamare, M.; Dumont, M.; Picard, G.; Larue, F.; Tuzet, F.; Delcourt, C.; Arnaud, L. Simulating optical top-of-atmosphere radiance satellite images over snow-covered rugged terrain. Cryosphere 2020, 14, 3995–4020. [Google Scholar] [CrossRef]
- Picard, G.; Dumont, M.; Lamare, M.; Tuzet, F.; Larue, F.; Pirazzini, R.; Arnaud, L. Spectral albedo measurements over snow-covered slopes: Theory and slope effect corrections. Cryosphere 2020, 14, 1497–1517. [Google Scholar] [CrossRef]
- Robledano, A.; Picard, G.; Arnaud, L.; Larue, F.; Ollivier, I. Modelling surface temperature and radiation budget of snow-covered complex terrain. Cryosph. 2022, 16, 559–579. [Google Scholar] [CrossRef]
- Teillet, P.M.; Guindon, B.; Goodenough, D.G. On the Slope-Aspect Correction of Multispectral Scanner Data. Can. J. Remote Sens. 1982, 8, 84–106. [Google Scholar] [CrossRef] [Green Version]
- Riano, D.; Chuvieco, E.; Salas, J.; Aguado, I. Assessment of different topographic corrections in landsat-TM data for mapping vegetation types. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1056–1061. [Google Scholar] [CrossRef] [Green Version]
- Davaze, L.; Rabatel, A.; Arnaud, Y.; Sirguey, P.; Six, D.; Letreguilly, A.; Dumont, M. Monitoring glacier albedo as a proxy to derive summer and annual surface mass balances from optical remote-sensing data. Cryosph. 2018, 12, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man. Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M. Statistical and structural approaches to texture. Proc. IEEE 1979, 67, 786–804. [Google Scholar] [CrossRef]
- Cohen, J. A Coefficient of Agreement for Nominal Scales. Educ. Psychol. Meas. 1960, 20, 37–46. [Google Scholar] [CrossRef]
- Rosenfield, G.H.; Fitzpatrick-Lins, K. A coefficient of agreement as a measure of thematic classification accuracy. Photogramm. Eng. Remote Sens. 1986, 52, 223–227. [Google Scholar]
- Hüsler, F.; Jonas, T.; Wunderle, S.; Albrecht, S. Validation of a modified snow cover retrieval algorithm from historical 1-km AVHRR data over the European Alps. Remote Sens. Environ. 2012, 121, 497–515. [Google Scholar] [CrossRef]
- Wu, Q.; Jin, Y.; Fan, H. Evaluating and comparing performances of topographic correction methods based on multi-source DEMs and Landsat-8 OLI data. Int. J. Remote Sens. 2016, 37, 4712–4730. [Google Scholar] [CrossRef]
- Dumont, M.; Gardelle, J.; Sirguey, P.; Guillot, A.; Six, D.; Rabatel, A.; Arnaud, Y. Linking glacier annual mass balance and glacier albedo retrieved from MODIS data. Cryosphere 2012, 6, 1527–1539. [Google Scholar] [CrossRef] [Green Version]
- Mahajan, S.; Fataniya, B. Cloud detection methodologies: Variants and development—A review. Complex Intell. Syst. 2020, 6, 251–261. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Xie, F.; Zi, Y.; Yin, J. Cloud detection of remote sensing images by deep learning. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 701–704. [Google Scholar]
- Li, Z.; Shen, H.; Cheng, Q.; Liu, Y.; You, S.; He, Z. Deep learning based cloud detection for medium and high resolution remote sensing images of different sensors. ISPRS J. Photogramm. Remote Sens. 2019, 150, 197–212. [Google Scholar] [CrossRef] [Green Version]
- Moore, G.W.K. Mount Everest snow plume: A case study. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Nepal, S.; Chen, J.; Penton, D.J.; Neumann, L.E.; Zheng, H.; Wahid, S. Spatial GR4J conceptualization of the Tamor glaciated alpine catchment in Eastern Nepal: Evaluation of GR4JSG against streamflow and MODIS snow extent. Hydrol. Process. 2017, 31, 51–68. [Google Scholar] [CrossRef]
- Shukla, S.; Kansal, M.L.; Jain, S.K. Snow cover area variability assessment in the upper part of the Satluj River Basin in India. Geocarto Int. 2017, 32, 1285–1306. [Google Scholar] [CrossRef]
- Nepal, S. Impacts of climate change on the hydrological regime of the Koshi river basin in the Himalayan region. J. Hydro-Environment Res. 2016, 10, 76–89. [Google Scholar] [CrossRef] [Green Version]
- GitHub-Bessinz/VENuS_Cosine_Correction. Available online: https://github.com/bessinz/VENuS_cosine_correction (accessed on 21 February 2022).
Sensor | Wavelengths (µm) | Temporal Resolution | Spatial Resolution | Tile Size (km2) | Number of SRE and FRE Processed Images |
---|---|---|---|---|---|
VENµS | 12 bands: 0.420 to 0.910 | 2-day | 5-m | 27.5 × 54 | 238 × 2 |
Site | Lat/long | Elevation (m a.s.l.) | Albedo | Air Temp. | Snow Height | Precip. | Surface Type |
---|---|---|---|---|---|---|---|
Pyramid | N 86°48′47″/E 27°57′32″ | 5035 | Kipp and Zonen CNR4 | Vaisaila HMP45C | NA | Geonor T-200 | grassy surface |
Changri Nup | N 86°46′40″/E 27°58′57″ | 5387 | Kipp and Zonen CNR4 | Vaisaila HMP155 | Campbell SR50A | NA | Debris-covered glacier |
South Col | N 27°58′18″/E 86° 55′46″ | 7945 | Hukseflux NR01 | Vaisala HMP155 | NA | NA | rocky bare surface |
Bit | Value | Description |
---|---|---|
0 | 1 | All clouds except the thinnest and all shadows |
1 | 2 | All clouds (except the thinnest) |
2 | 4 | Cloud shadows cast by a detected cloud |
3 | 8 | Cloud shadows cast by a cloud outside image |
4 | 16 | Clouds detected via mono-temporal thresholds |
5 | 32 | Clouds detected via multi-temporal thresholds |
6 | 64 | Thinnest clouds |
7 | 128 | High clouds detected by stereoscopy |
Product Name | DEM | Correction |
---|---|---|
SRE | None | None |
FRE | SRTM 90-m | Gamma |
TopCos HMA | HMA 8-m | Cosine |
TopCos SRTM | SRTM 90-m | Cosine |
NDVI | ENERGY | ||
---|---|---|---|
Low | High | ||
Clouds | −0.06 | 0.05 | >0.8 |
Snow | −0.16 | −0.02 | >0.8 |
Recall | Accuracy | Precision | Kappa (HSS) |
---|---|---|---|
Site | Metrics | SRE | FRE | TopCos HMA | TopCos SRTM | Average Normalized Skill Score (ANSS) by Site |
---|---|---|---|---|---|---|
Pyramid | RMSE | 0.10 | 0.08 | 0.08 | 0.11 | 0.58 |
Bias | −0.05 | −0.03 | -0.03 | −0.05 | 0.71 | |
STD | 0.09 | 0.08 | 0.08 | 0.09 | 0.50 | |
R2 | 0.72 | 0.71 | 0.71 | 0.72 | 0.94 | |
Changri Nup | RMSE | 0.12 | 0.12 | 0.22 | 0.18 | 0.27 |
Bias | −0.04 | −0.04 | −0.14 | −0.10 | 0.43 | |
STD | 0.12 | 0.11 | 0.17 | 0.14 | 0.21 | |
R2 | 0.76 | 0.76 | 0.73 | 0.74 | 0.98 | |
South Col | RMSE | 0.14 | 0.14 | 0.13 | 0.12 | 0.40 |
Bias | 0.08 | 0.09 | 0.02 | 0.04 | 0.59 | |
STD | 0.11 | 0.10 | 0.13 | 0.11 | 0.34 | |
R2 | 0.71 | 0.73 | 0.71 | 0.73 | 0.95 | |
Average Normalized Skill Score (ANSS) by product | ANSS RMSE | 0.45 | 0.48 | 0.35 | 0.38 | |
ANSS Bias | 0.60 | 0.62 | 0.55 | 0.55 | ||
ANSS STD | 0.37 | 0.43 | 0.25 | 0.33 | ||
ANSS R² | 0.96 | 0.96 | 0.94 | 0.96 |
Recall | Accuracy | Precision | Kappa (HSS) | |
---|---|---|---|---|
CLM_XS | 99.9% | 80.9% | 37.6% | 45.6% |
CloudCov | 99.7% | 95.5% | 72.1% | 81.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bessin, Z.; Dedieu, J.-P.; Arnaud, Y.; Wagnon, P.; Brun, F.; Esteves, M.; Perry, B.; Matthews, T. Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal). Remote Sens. 2022, 14, 1098. https://doi.org/10.3390/rs14051098
Bessin Z, Dedieu J-P, Arnaud Y, Wagnon P, Brun F, Esteves M, Perry B, Matthews T. Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal). Remote Sensing. 2022; 14(5):1098. https://doi.org/10.3390/rs14051098
Chicago/Turabian StyleBessin, Zoé, Jean-Pierre Dedieu, Yves Arnaud, Patrick Wagnon, Fanny Brun, Michel Esteves, Baker Perry, and Tom Matthews. 2022. "Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal)" Remote Sensing 14, no. 5: 1098. https://doi.org/10.3390/rs14051098
APA StyleBessin, Z., Dedieu, J. -P., Arnaud, Y., Wagnon, P., Brun, F., Esteves, M., Perry, B., & Matthews, T. (2022). Processing of VENµS Images of High Mountains: A Case Study for Cryospheric and Hydro-Climatic Applications in the Everest Region (Nepal). Remote Sensing, 14(5), 1098. https://doi.org/10.3390/rs14051098