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Abstract: Clouds limit the quality and availability of optical wavelength surface observations from
Earth Observation (EO) satellites. This limitation is particularly relevant for the generation of
systematic thematic products from EO medium spatial resolution polar orbiting sensors, such as
Landsat, which have reduced temporal resolution compared to coarser resolution polar orbiting
sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS on the Terra
satellite is in the same orbit as Landsat 7 with an approximately 30 minute overpass difference.
In this study, one year of global Landsat 7 Enhanced Thematic Mapper Plus (ETM+) image cloud
fractions over land are compared with collocated MODIS cloud fractions, generated by combining the
MODIS-Terra global daily cloud mask product (MOD35) with the Landsat 7 ETM+ image footprints
and acquisition calendar. The results show high correlation between the MODIS and Landsat 7 ETM+

cloud fractions (R2 = 0.83), negligible bias (median difference: <0.01) and low dispersion around
the median (interquartile range: [−0.02, 0.06]). These results indicate that, globally, the cloud cover
detected by MODIS-Terra data can be used as a proxy for Landsat 7 ETM+ cloud cover.
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1. Introduction

Earth Observation (EO) data sensed in the optical portion of the electromagnetic spectrum are
widely used for studying the Earth’s biosphere, and its dynamics and disturbances from a regional
to global scale. Cloud obscuration affects the quality and availability of EO optical data over land
which presents a challenge for global land monitoring. Thanks to the systematic acquisition strategy
and free data access policy of currently available moderate resolution optical data such as Landsat [1]
and Sentinel-2 [2], global systematic land monitoring products at moderate resolution are being
developed [3]. Landsat-8, Sentinel-2A, and Sentinel-2B provide 16-day, 10-day and 10-day global
median average revisit intervals, respectively, and 2.9 days when combined together [4]. These revisit
cycles are not particularly high, particularly for individual sensors, and consequently, cloud obscuration
may remain an issue for monitoring applications using these data, for example, for monitoring features
that evolve with fast temporal dynamics, such as certain burned areas [5–7], ephemeral water bodies [8],
or agricultural crops [9].

The near daily global coverage 1 km cloud product derived from the Moderate Resolution Imaging
Spectroradiometer (MODIS) [10] has been used in feasibility studies to assess the potential impact
of cloud obscuration on other land monitoring satellites, using the MODIS time series to generate
a spatially explicit climatology of cloud cover probabilities [11]. Moderate resolution data, such as
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Landsat, cannot be directly used for generating such a climatology because of the limited number of
available acquisitions, due to the low revisit frequency and to the fragmentary state of the archive
outside the United States [12]. For example, researchers have used the MODIS global cloud mask
product as a proxy to estimate the effect of cloud cover on the HyspIRI mission design [13], and to
define the observation requirements for operational cropland monitoring from medium resolution
systems [14].

However, the use of MODIS cloud data as a proxy assumes that the MODIS 1 km cloud mask
is representative of cloud conditions experienced by other satellites. A recent regional study on the
probability of Landsat cloud-free over the Eastern United States found a strong correlation between
the cloud cover observed by Landsat 7 ETM+ and MODIS, but the intercomparison was limited to
three Landsat path/row locations [15].

Several factors can contribute to differences among satellite cloud products. Wind can displace
clouds and other atmospheric constituents in the time between different satellite overpasses [16,17].
Clouds evolve over time, and in many parts of the world, cloud cover increases during the day over
land [18]. The MODIS-Terra and Aqua satellites have 10:30 a.m. and 1:30 p.m. equatorial overpass
times respectively, and although globally they observe similar cloud amounts, in many regions they
reveal different cloud amounts at the time of overpass [18,19]. Observations from the afternoon-train
(A-train) polar orbiting CloudSat and CALIPSO sensors, that are designed for cloud monitoring,
show good agreement of total horizontal cloud fraction retrievals at 2◦ resolution with the A-train
MODIS-Aqua 1 km cloud mask product [20]. This is likely because of the small 3 min (CloudSat) and
1 min (CALIPSO) overpass time differences relative to MODIS-Aqua. Other differences are due to the
size and spatial distribution of clouds relative to the sensor spatial resolutions. For example, the 1 km
MODIS cloud product may not detect sub-pixel or spatially fragmented clouds that are detectable at
30 m Landsat resolution. Differences in sensor spectral resolution may also introduce cloud detection
differences. For example Zhao and Di Girolamo [21] compared 15 m cloud detections from Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data with the MODIS cloud product
and found that MODIS systematically overestimated the cloud fraction relative to ASTER, with a
mean difference of 0.18 and large variations across scenes associated with the spatial cloud patterns.
As ASTER is onboard the same Terra platform as MODIS, these discrepancies were attributed to the
differences in spatial and spectral resolution of the two instruments. Nominally, clouds have high
reflectance at visible and SWIR wavelengths, and generally are cold, and so sensors with visible to
SWIR bands and thermal bands provide more reliable cloud detection than sensors that have only a
subset of these bands [22]. Finally, cloud detection algorithm differences may result in different cloud
masks at coarse [23] and at medium resolution [24].

In this study, we evaluate the assumption that the MODIS-Terra 1 km cloud product can be
used globally to predict Landsat 7 ETM+ image cloud fractions over land. This is a reasonable
expectation as both sensors are in the same orbit and have an overpass time difference of approximately
30 minutes [25]. The fraction of cloud cover in every global Landsat image acquired in 2002 is compared
to cloud cover fractions in the contemporaneous MODIS-Terra cloud cover product (MOD35). The
relationship between the MODIS and Landsat 7 ETM+ cloud fractions is characterized using both linear
and logistic models, and the corresponding regression coefficients and residual errors are examined.

2. Data

2.1. Landsat Cloud Data

The Landsat 7 is in a polar sun-synchronous orbit with approximately a 705 km altitude, 98.2◦

inclination, and 10:00 a.m. ± 15 min descending equatorial overpassing local time [26]. The Landsat
7 carries the Enhanced Thematic Mapper Plus (ETM+) instrument which senses multispectral data
over a 15◦ field of view. The orbit altitude and sensor field of view result in an approximately 185 km
swath and 16-day nadiral overpass revisit frequency. Landsat data are distributed as 185 km × 170 km
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images defined in the Worldwide Reference System (WRS) that divides the globe into 233 paths (orbital
ground-tracks) and 248 rows (latitude parallels) [27].

The most recent Landsat Collection 1 cloud mask information was used; it is generated using the
Fmask algorithm [28,29] that was found to have better performance than other algorithms [22]. Fmask
is a two-step object-based algorithm. First, a potential cloud layer is generated by combining spectral
tests based on cloud physical properties, and a cloud probability mask based on temperature, brightness
and spectral variability. The final cloud mask is subsequently generated through segmentation of the
potential cloud layer. The percentage of clouds, over only the land pixels in each image defined by
the CLOUD_COVER_LAND metadata, was used and scaled in the range 0 to 1. This is henceforth
referred to as the “Landsat 7 cloud fraction.”

2.2. MODIS Cloud Mask and Geolocation Product

The MODIS-Terra satellite is in the same descending orbit as Landsat 7 with a nominal period of
99 minutes, and a 16-days nadiral overpass revisit frequency, and trails Landsat 7 by approximately
30 minutes [25]. MODIS has a 110◦ field of view and senses a 2330 km swath with overlapping swaths
at latitudes >30◦ [30]. The Collection 6 MODIS-Terra 1 km cloud mask product (MOD35) [10] was
used. The MOD35 cloud detection algorithm involves five steps: (1) a series of spectral and spatial
variability tests to detect the presence or absence of clouds are applied independently; (2) confidence
scores are computed for each test applied; (3) the confidence scores of each test are combined into
a preliminary overall confidence of the presence or absence of clouds for each pixel; (4) additional
spatial and spectral tests (‘restoral tests’) are applied to reduce commission errors due to particular
scene conditions (e.g., sun-glint, presence of bright surfaces); (5) a final cloud detection confidence
level is generated, combining the results of all the cloud detection tests.

The MOD35 product classifies each 1 km MODIS observation into four possible states of decreasing
confidence of cloud detection: “Cloudy” (confidence clear≤ 66%), “Probably Cloudy” (66% < confidence
clear ≤ 95%), “Probably Clear” (95% < confidence clear ≤ 99%), and “Clear” (confidence clear > 99%).
In addition, ancillary data layers that describe the viewing and illumination geometry, and the
land/water status of each 1 km observation are included in the product [10]. The MOD35 product is
a Level 2 product and so is defined in the MODIS orbit swath geometry. The MODIS Geolocation
product (MOD03) that defines the geographic location of the MODIS Level 2 swath products [31,32]
was also used in this study.

2.3. Spatial and Temporal Extent of the Analysis

The analysis was performed using all available Landsat and MODIS data acquired from 1 January
to 31 December 2002. This study period was selected because 2002 was the last complete year of
Landsat 7 ETM+ acquisitions before the Scan Line Corrector (SLC) failure that resulted in a systematic
failure to sense 22% of each image [33] and reduced the reliability of SLC-off Landsat image cloud
metadata information [34]. In 2002, the MODIS-Terra data were globally available as MODIS-Terra
was launched in 1999. The greater majority of the global Landsat image archive is acquired over land
masses between 70◦S and 70◦N [12], and so the study was restricted to this latitudinal range.

3. Methods

3.1. Computation of MODIS Cloud Fractions for Each Landsat Image

The MOD35 1 km cloud and land/water masks for each orbit swath for each global day of 2002
were reprojected into the 1 km MODIS sinusoidal equal area projection [30] using the corresponding
MOD03 swath geolocation files. The data were reprojected by nearest neighbor resampling to preserve
the input 1 km data values. The Landsat 7 ETM+ ground swaths coincide with the central nadir-looking
portion of the MODIS-Terra swath acquired on the same day from the same orbit. The footprint of each
Landsat image was reprojected into the gridded 1 km MODIS sinusoidal equal area projection. The
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1 km land pixels falling under each Landsat image for each orbit were derived from the reprojected
1 km MOD35 MODIS land/water mask, and the 1 km MODIS cloud mask values were summed to
derive the MODIS land cloud fraction for each Landsat image.

The MOD35 land/water mask has four possible values, namely “Land”, “Desert”, “Coastal area”,
and “Water.” To ensure consistency with the land pixel definition used to compute the Landsat 7 cloud
fractions, only the MOD35 1 km pixels labelled as “Land”, “Desert” or “Coastal area” in the MOD35
land/water mask were used to derive the MODIS cloud fractions.

The MODIS cloud fractions were defined for each Landsat image in three ways using different
combinations of the MODIS cloud mask cloud detection confidence states (Table 1). For each definition,
the MODIS cloud fraction was derived as the number of 1 km pixels labeled as cloud, divided by
the total number of 1 km land pixels (labelled as “Land”, “Desert” or “Coastal area” in the MOD35
land/water mask) encompassing the Landsat image. The three definitions include a conservative cloud
definition (#1), an intermediated definition (#2) and a much less conservative definition (#3).

Table 1. The three Moderate Resolution Imaging Spectroradiometer (MODIS) cloud fraction definitions
derived by different combinations of MODIS cloud mask (MOD35) detection confidence states.

Definition MOD35 Confidence State Combination

#1 Cloudy
#2 Cloudy, Probably Cloudy
#3 Cloudy, Probably Cloudy, Probably Clear

3.2. MODIS and Landsat Cloud Fraction Comparison Methodology

First, histograms of the Landsat cloud fractions and the MODIS cloud fractions were computed to
verify that the whole range [0, 1] of cloud fractions was represented in the dataset. Subsequently, the
cloud fraction difference, defined as the Landsat cloud fraction minus the MODIS cloud fraction, was
computed for all the global 2002 study data. The distribution of the cloud differences was summarized
through non-parametric summary statistics (median, interquartile range, and 5th–95th quantile range).

The relationship between the Landsat and MODIS cloud fractions was investigated using linear
and logistic models, where the Landsat cloud fraction is the response variable and the MODIS
cloud fraction is the predictor variable. A logistic regression was used because, in general, coarse
resolution detection products, compared to higher resolution products, are affected by saturation issues.
Thus, a logistic regression would be appropriate if the cloud fraction is overestimated at high cloud
proportions and underestimated at low cloud proportions. The regression residuals were analyzed
to investigate the presence of heteroscedasticity in the relationship between Landsat and MODIS
cloud fractions.

Standard metrics and coefficients were reported. For the linear models, these include the linear
regression β0 (intercept) and β1 (slope) coefficients, the standard error of the regression coefficients, the
coefficient of determination of the linear regression (R2), and the significance of the regression (p-value).
In addition, the standard error of the residuals, i.e., the observed minus the predicted Landsat 7 cloud
fraction, were derived. For the logistic models, these include the logistic regression coefficients β0

(intercept term of the log-odds function) and β1 (slope term of the log-odds function), the standard error
of the regression coefficients, and the significance of the regression (p-value). Since there is no direct
analog of R2 in a logistic regression, the residual deviance was reported as a goodness-of-fit statistic for
the model. In addition, the null deviance was reported, i.e., the deviance of a model when only a single
coefficient (the intercept term of the log-odds function) is estimated. The difference between the null
deviance and the residual deviance provides an indication of the overall performance of the model,
with large differences indicating good performance and small differences indicating poor performance.

The presence of spatial patterns in the residuals were investigated by analyzing the distribution
of the residuals at each Landsat WRS path/row location. Summary parameters of the distribution
(median, interquartile range and 5th–95th quantile range) were calculated as a function of the land
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fraction, defined as the number of 1 km land pixels over the total footprint of the image, to verify
whether the behavior of linear and logistic models was significantly different in coastal and inland
areas. Finally, the distribution of the residuals was calculated as a function of the time of acquisition,
using three-month seasonal intervals.

4. Results

4.1. Landsat 7 ETM+ Image Availability and Global Cloud Histograms

A total of 109,814 Landsat 7 ETM+ images acquired in 2002 between 70◦S and 70◦N were
considered in this study (Figure 1). Nominally, the Landsat 7 ETM+ overpasses each WRS path/row
22 or 23 times per year, but in many regions, fewer images are available in the Landsat archive for
a variety of reasons [32,35]. In 2002, most acquisitions occur over the Conterminous United States
(CONUS), much of South America, Central and Southern Europe, Australia and Eastern Asia, whereas
the coverage is reduced in parts of Africa, Central America, and Central and Northern Asia.
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Figure 1. Spatial distribution and number of Landsat 7 ETM+ images acquired from 1 January to 31
December 2002 between 70◦S and 70◦N. The number of images for each Landsat WRS path/row is
depicted with a rainbow color scale.

Figure 2 shows histograms of the Landsat 7 and also the MODIS cloud fractions (defined for
the three MODIS cloud definitions) for the 109,814 Landsat 7 ETM+ images acquired in 2002 and
illustrated in Figure 1. The histograms exhibit a full range of cloud fraction values, i.e., from 0 to 1, and
have bimodal distributions. Except for the least conservative MODIS cloud definition (#3), the first
mode corresponds to images with 0% cloud fractions and the second mode corresponds to 100% cloud
fractions. The MODIS cloud fraction histograms have progressively fewer cloud-free images for the
less conservative cloud definitions.
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Figure 2. Histograms of Landsat 7 (top) and MODIS (bottom row) cloud fractions, observed in all the
2002 study data (Figure 1). The histograms are quantized using 100 bins of equal width. The three
MODIS cloud fraction histograms are for the three MODIS cloud definitions (Table 1).

4.2. MODIS and Landsat Cloud Fraction Differences

Figure 3 shows summary statistics of the MODIS cloud fraction minus the Landsat 7 cloud fraction
derived for all the global 2002 study data. The smallest differences are observed for the most conservative
MODIS cloud fraction definition (#1: median difference = 0.00, interquartile range = [−0.02, 0.06]),
and increases for the less conservative MODIS cloud fraction definitions (#2: median difference = 0.04,
interquartile range = [0.00, 0.14]; #3: median difference = 0.12, interquartile range = [0.03, 0.25]).
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Figure 3. Box and whisker plots summarizing the distribution of the difference between the MODIS
and Landsat 7 cloud fractions for all the global 2002 data (Figure 1) considering the three MODIS cloud
fraction definitions (Table 1). The thick vertical lines show the median of the distribution, the boxes
show the interquartile range, and the whiskers show the 5th to 95th quartile range.

4.3. Regression Analysis

Figure 4 shows scatterplots comparing the Landsat 7 cloud fractions and the MODIS cloud
fractions for the three MODIS cloud fraction definitions, and considers all the study data. The
point density distribution, calculated using a 100 × 100 quantization of the axes, is plotted using a
rainbow color scale. Linear and logistic regressions are shown plotted as dotted and continuous lines
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respectively. The correlation and regression coefficients are summarized in Table 2. Consistent with
the boxplot results presented in Figure 3, the scatterplots indicate that the MODIS cloud fraction is
closest to the Landsat cloud fractions when the most conservative MODIS cloud fraction definition
is used (#1). Generally, MODIS overestimates the cloud fraction compared to Landsat and there is a
progressive overestimation from definition #1 to #3, as shown by the majority of the point distribution
(green to purple colors) positioned below the identity line (dashed line) for #2 and #3. This is also
reflected by the linear regression lines: the regression lines of #2 and #3 are noticeably further apart
from the identity line than the regression line for #1.
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The logistic regression (solid), linear regression (dotted) and the identity line (dashed) are shown
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Table 2. Regression results of the Landsat 7 and MODIS cloud fraction scatterplots shown in Figure 4.

Definition Coefficients Standard Error of the
Coefficients

Standard Error
of the Residuals R2 p-Value

Linear #1 β0: 0.02, β1: 0.89 β0: 0.0007, β1: 0.0012 0.149 0.83 <2ˆ−16
Model #2 β0: −0.02, β1: 0.87 β0: 0.0008, β1: 0.0012 0.157 0.82 <2ˆ−16

#3 β0: −0.10, β1: 0.90 β0: 0.0011, β1: 0.0016 0.186 0.74 <2ˆ−16

Definition Coefficients Standard Error of the
Coefficients

Residual
Deviance

Null
Deviance p-Value

Logistic #1 β0: −2.79, β1: 4.97 β0: 0.016, β1: 0.026 18,194 76,678 <2ˆ−16
Model #2 β0: −3.26, β1: 5.11 β0: 0.019, β1: 0.027 18,199 76,678 <2ˆ−16

#3 β0: −3.91, β1: 5.50 β0: 0.023, β1: 0.031 22,146 76,678 <2ˆ−16

The logistic regression results are consistent with the results of the linear regression, with a similar
residual deviance for definitions #1 (18,194) and #2 (18,199) and considerably higher residual deviance
for #3 (22,146). For all three MODIS cloud definitions, the residual deviance is considerably smaller
than the null deviance, indicating that the MODIS cloud fraction is an effective predictor for the
Landsat 7 cloud fraction. For all three MODIS cloud definitions, the standard errors of the coefficients
are smaller than the estimated values of the coefficients, and the regressions are significant (p < 0.05).

For all three MODIS cloud definitions, the linear regressions between the MODIS and the Landsat
7 cloud fractions are significant (p < 0.05). The highest coefficient of determination (R2) is observed
for MODIS cloud definition #1 (R2 = 0.83), with a progressively lower coefficient of determination
for definition #2 (R2 = 0.82) and #3 (R2 = 0.74). While the β1 (slope) coefficient is similar in the three
definitions, with values of 0.89 (#1), 0.87 (#2) and 0.90 (#3), the β0 (intercept) coefficient decreases from
0.02 (#1), to −0.02 (#2) and −0.10 (#3), reflecting that the MODIS cloud fractions become systematically
higher than the Landsat cloud fractions when the less conservative cloud definitions #2 and #3 are
considered. The standard error of the residuals is also lower for definition #1 (0.149) compared to #2
(0.157) and #3 (0.186).
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To further investigate the behavior of the linear and logistic models, the regression residuals,
i.e., the observed minus the predicted Landsat 7 cloud fractions, are summarized in Figure 5 for the
global year of study data. The scatter plots in Figure 5 were obtained by plotting the regression
residuals as a function of the MODIS cloud fraction. The scatter plots separately consider the linear (top
row) and logistic models (bottom row), for MODIS cloud definitions #1 (left column), #2 (center column)
and #3 (right column). In all plots, the majority of the data points (green to purple colors) corresponds
to low residuals (i.e., y-axes values close to 0), and only isolated data points (red colors) correspond
to large residuals (up to 1.0 and −1.0). Consistent with the results of Figure 4 and Table 2, the most
conservative MODIS cloud fraction definition (#1) has residuals that are clustered around 0 on the
y-axes, whereas definitions #2 and #3 have more dispersed residuals.
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Figure 5. Scatterplot of the regression model residuals, defined as the observed minus the predicted
Landsat 7 cloud fraction, plotted against the MODIS cloud fraction for the linear (top row) and the
logistic regression model (bottom row) considering the 3 MODIS cloud fraction definitions (Table 1).
The median (+) and interquartile range (x) of the residuals are shown for four MODIS cloud fraction
bins: [0, 0.25], [0.25, 0.50], [0.5, 0.75], and [0.75, 1].

The median (denoted by + symbols) and interquartile range (x symbols) of the residuals over
four subdivisions of the MODIS cloud fraction range from [0, 0.25], [0.25, 0.50], [0.5, 0.75], and [0.75,
1] and are shown in Figure 5. These four ranges are used to broadly verify whether the distribution
of the residuals changes as a function of the MODIS cloud fraction, i.e., to identify any potential
heteroscedasticity of the data, which would violate some of the underlying assumptions of the
regression analyses. The residual median and interquartile range values do not significantly change
across the MODIS cloud fraction range, indicating that no marked heteroscedasticity is present for
both the linear and logistic models, and for any of the three MODIS cloud mask definitions.
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The most conservative MODIS cloud fraction definition (#1) has the highest linear regression
R2, and lowest logistic regression residual deviance (Table 2). Table 3 summarizes for this definition
the median and interquartile range of the residuals for both regressions. The linear model has lower
residuals than the logistic model for very low cloud fraction (<0.25), but slightly higher residuals at
higher cloud fraction; overall, however, the two models have similar performance, with identical value
of the median error (−0.003 linear and logistic) and comparable interquartile ranges ([−0.032, 0.085]
linear model, [−0.058, 0.091] logistic model). Thus, the most conservative MODIS cloud fraction
definition (#1) is an effective predictor of the Landsat 7 cloud fraction, both when fitting a linear and a
logistic model.

Table 3. Median, 25th and 75th quantiles of the residuals for the linear (top) and logistic (bottom) models.
The residuals were calculated globally and divided in MODIS definition #1 cloud fraction intervals.

Linear Model MODIS Cloud Definition #1 Cloud Fraction Interval

Residual value [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1] [0, 1]

25th quantile −0.022 −0.097 −0.100 −0.007 −0.032
Median −0.018 −0.005 0.004 0.077 −0.003

75th quantile 0.015 0.079 0.084 0.096 0.085

Logistic Model MODIS Cloud Definition #1 CLOUD Fraction Interval

Residual value [0, 0.25] [0.25, 0.50] [0.50, 0.75] [0.75, 1] [0, 1]

25th quantile −0.058 −0.036 −0.105 −0.031 −0.058
Median −0.047 0.057 −0.001 0.062 −0.003

75th quantile 0.019 0.142 0.079 0.101 0.091

Figure 6 shows the geographic distribution of the minimum (top row), median (middle row) and
maximum (bottom row) residuals for the linear (left column) and logistic (right column) regression using
the most conservative MODIS cloud definition (#1). Negative residuals (red, yellow colors) indicate
that the linear and logistic models overestimate the observed Landsat cloud fraction, whereas positive
residuals (cyan and blue colors) indicate the linear and logistic models underestimate the Landsat cloud
fraction. Large minimum and maximum residuals (top and bottom row) are predominantly observed at
WRS path/rows locations over coastlines, or at high latitude, or over snow prone mountain ranges.
This is discussed further in Section 5.

The minimum and maximum residual values are driven by outliers whereas the median values
correspond to the 50th percentile of the residual distribution and are robust to outliers; as indicated
by the prevalence of green colors in the Figure 6 middle row figures, the median of the residuals is
close to 0 at most locations. This is further illustrated by Figure 7, which summarizes the distribution
of the median residuals shown in the middle row of Figure 6. The global median residual is slightly
negative (−0.002 in both models), with a small interquartile range ([−0.019; 0.043] for the linear
model, [−0.048; 0.047] for the logistic model) and small 5th–95th quantile range ([−0.065; 0.095] for
the linear model, [−0.060, 0.101] for the logistic model). This indicates that, while large median
residuals occasionally occur, the most conservative MODIS cloud fraction definition (#1) is usually
an effective predictor of the median Landsat 7 cloud fraction not only globally, but also at each WRS
path/row location.
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Figure 7. Box and whisker plots summarizing the distribution of the median residual of the linear and
logistic models at each WRS path/row location (i.e., Figure 6, middle row). The thick vertical lines
show the median of the distribution, the boxes show the interquartile range, and the whiskers show the
5th–95th quantile range.

Figure 8 shows scatterplots of the linear and logistic regression residuals as a function of the
land fraction in each Landsat image. The median, interquartile range and 5th–95th quantile range of
the distribution summarize the distribution of the residuals. The residual median and interquartile
ranges are stable, albeit with a small positive median residual (0.042 with both models) at small land
fractions (0 to 0.05), and a small negative median residual (−0.009 linear, −0.014 logistic) for large
land fractions (0.95 to 1.00). Consistent with Figure 6, the 5th−95th quantile range indicates that at
small land fractions (0 to 0.05) there are large outliers in the residuals (range [−0.556, 0.394] linear,
[−0.573, 0.412] logistic). The 5th−95th quantile range, however, drops quickly as the land fraction
increases, and it remains substantially stable for land fractions >0.25.
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Figure 8. Scatterplot of the linear (left) and logistic (right) regression residuals plotted against the land
fraction in each Landsat path/row, considering all the 2002 study data, for the most conservative MODIS
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Finally, in order to verify the presence of seasonal pattern, Figure 9 shows the residuals of the
linear (top row) and logistic (bottom row) models as function of the acquisition date for the Landsat
images in the northern (left column) and southern (right column) hemispheres. Median, interquartile
range, and 5th–95th quantile ranges of the residuals are plotted for quarterly intervals, defined as
{[January–March], [April–June], [July–September], [October–December]}, and are summarized in
Table 4.
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between the northern (left column) and southern hemisphere (right column) plotted against the
Landsat acquisition day of year, considering all the 2002 study data, plotted for the most conservative
MODIS cloud fraction definition (#1) (Table 1). The point density distributions are generated using a
25 × 25 quantization of the axes, and are displayed with a rainbow logarithmic color scale. It should be
noted that the artifact visible in all plots for days 75−90 is due to a gap from March 19th to 28th in the
MODIS-Terra data acquisition. The median (+), interquartile range (x) and the 5th−95th quantile range
(◦) of the residuals are shown for quarterly acquisition intervals, defined as {[Jan−Mar], [Apr−Jun],
[Jul−Sep], [Oct−Dec]}.

Table 4. Median, 5th, 25th, 75th and 95th quantiles of the residuals for the linear (top) and logistic
(bottom) models. The residuals were calculated globally and divided in quarterly acquisition
date intervals.

Acquisition Date Interval

Jan–Mar Apr–Jun Jul–Sep Oct–Dec Year

Linear
model

Northern
Hemisphere

5th quantile −0.394 −0.217 −0.161 −0.264 −0.258
25th quantile −0.086 −0.036 −0.020 −0.044 −0.038

Median −0.019 0.002 0.020 −0.009 0.001
75th quantile 0.079 0.089 0.095 0.081 0.089
95th quantile 0.180 0.172 0.175 0.164 0.173

Southern
Hemisphere

5th quantile −0.170 −0.172 −0.147 −0.154 −0.159
25th quantile −0.022 −0.019 −0.019 −0.022 −0.020

Median 0.005 −0.015 −0.016 −0.008 −0.009
75th quantile 0.088 0.054 0.053 0.071 0.069
95th quantile 0.174 0.163 0.158 0.152 0.161

Logistic
model

Northern
Hemisphere

5th quantile −0.390 −0.205 −0.150 −0.251 −0.244
25th quantile −0.073 −0.058 −0.049 −0.058 −0.058

Median −0.030 0.008 0.027 −0.012 0.003
75th quantile 0.085 0.095 0.101 0.087 0.094
95th quantile 0.192 0.189 0.197 0.184 0.192

Southern
Hemisphere

5th quantile −0.164 −0.165 −0.129 −0.141 −0.150
25th quantile −0.058 −0.058 −0.058 −0.058 −0.058

Median 0.004 −0.034 −0.038 −0.012 −0.021
75th quantile 0.093 0.063 0.062 0.079 0.075
95th quantile 0.201 0.191 0.186 0.178 0.188

While no seasonal pattern is detected in the Southern Hemisphere, in the Northern Hemisphere the
residuals exhibit a slight seasonal pattern, with higher residual in the winter months. The median of the
residuals changes from 0.020 (linear) and 0.027 (logistic) in July–September to−0.019 (linear) and−0.030
(logistic) in January–March. Furthermore, while the 25th, 75th and 95th quantile are substantially
stable, the 5th percentile shows the largest seasonal trend, with a variation from −0.161 (linear) and
−0.150 (logistic) in July−September to −0.394 (linear) and −0.390 (logistic). These results indicate that
the large minimum residuals at high latitude shown in Figure 6, (top row), are predominantly observed
on images acquired in the Northern Hemisphere in January–March, i.e., in the winter months.

5. Discussion

Linear and logistic models were used to predict the Landsat 7 ETM+ cloud fraction from MODIS
MOD35 observations, and a non-parametric analysis of the residuals was performed. Overall, the
analysis indicates a high degree of correspondence between the Landsat and MODIS cloud fractions,
with the best results observed when only the pixels confidently labeled as cloudy in the MOD35
product are used. This case resulted in the highest coefficient of determination and lowest residuals,
when fitting the linear and the logistic models. The difference between the MODIS and Landsat cloud
fractions increases when less conservative MOD35 cloud definitions are used, i.e., when MODIS pixels
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flagged as potentially cloudy and potentially clear are counted in the cloud fraction. Arguably, this can
be explained considering that the MOD35 cloud masking algorithm makes use of the multiple thermal
bands and the water vapor/CO2 absorption bands which are available on the MODIS instrument. These
bands are missing from the Landsat ETM+ instrument, resulting in low sensitivity to thin clouds [28].

The analysis of the residuals indicates that the performance of the linear and logistic models were
substantially similar, with the linear model marginally better at low cloud fraction conditions, and the
logistic model marginally better for higher cloud fraction conditions. In the case of the linear model,
the intercept of the regression line is small (0.02), the slope is close to unity (0.87), and the median
of the residuals is also small (−0.002); this small positive error indicates that the use of MODIS to
predict the Landsat cloud fraction results in a small overestimation of the cloud cover. With either
model, the MODIS-Terra cloud mask underestimates the Landsat cloud fraction at low cloud levels,
and overestimates it at high cloud levels. Arguably this is due to the MODIS coarse resolution: small,
sparse clouds are not detected, and similarly small gaps in cloud cover are missed. These findings are
consistent with previous studies reporting that the MODIS cloud masking algorithm results in some
degree of overestimation on fragmented and optically thin clouds [18,21]. Further, this is a well-known
scale issue whereby coarse resolution detection products tend to over and underestimate the area
detected, compared to higher resolution products, when the areal proportions being detected are high
and low respectively. For example, this has been observed in comparison of MODIS and Landsat
derived burned areas [36], snow cover [37], and comparison of AVHRR and Landsat derived forest
maps [38].

The geographic analysis of the residuals revealed that the largest differences between the MODIS
and Landsat cloud fraction occur along the coastlines, and at high latitude. In the case of coastal
areas, further analysis indicated that the errors are mostly observed at WRS path/row locations with
land fractions ≤0.05. In these cases, cloud movement in the 30 minutes between the MODIS-Terra
and Landsat 7 overpasses may result in large discrepancies of the estimated cloud percentage over
land. Furthermore, false positives in the MOD35 cloud mask over coastlines, rivers and lake regions
are known issues of the MOD35 product [10,39]. Additionally, the temporal analysis of the residuals
showed the presence of a seasonal effect in the Northern Hemisphere: the overestimation of the Landsat
cloud fraction by the MODIS cloud mask is greater in winter than in summer. Visual inspection of
the MODIS and Landsat images, where large discrepancies were observed, confirmed that, at high
latitudes and over mountain ranges, ice and snow were flagged as clouds by the MODIS MOD35
product, also a known issue of the MOD35 product [10,40,41].

The results of this study indicate that the MODIS-Terra 1 km cloud product can be used to predict
Landsat 7 ETM+ image cloud fractions over land. Thus, the consistent, long term (2000 onwards)
daily cloud observations from the MODIS-Terra instrument can be used to assess the impact of cloud
on moderate resolution land monitoring products from the Landsat satellites. Recommendations
for the next (after Landsat 9) mission design are currently being developed [3]. Due to the high cost
of thermal wavelength sensors, a possible design option may be to have separate satellites carrying
thermal infrared (TIR) and visible to shortwave infrared wavelength (VSWIR) detectors. The degree
of temporal overpass separation between the TIR and the VSWIR observations will be considered in
application specific terms, but also to minimize overpass cloudiness differences. The results of this
study indicate that, in the morning sun-synchronous orbit, an approximately 30 minute overpass time
difference does not, globally on average, result in significant differences in observed cloud fraction over
land. We finally note that some cautions must be used in considering these results, as high residuals
of the linear and logistic regression models were observed on individual images, especially in the
presence of snow or on coastal areas.

6. Conclusions

In this paper, a systematic global comparison between the Landsat 7 ETM+ image cloud fraction
over land, and equivalent cloud fractions derived from contemporaneous MODIS-Terra (MOD35) cloud
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observations was undertaken. Three MODIS cloud fraction definitions were considered, including a
conservative cloud definition, an intermediated definition and a much less conservative definition. Due
to the similar acquisition orbits and overpass times, the MODIS MOD35 global cloud mask product is a
good predictor of the Landsat 7 ETM+ image cloud fraction over land. The most conservative MODIS
cloud fraction definition was the best predictor of the Landsat 7 ETM+ cloud fraction, resulting in high
coefficient of determination (R2 = 0.83), negligible bias (median difference: <0.01) and low dispersion
around the median (interquartile range: [−0.02, 0.06]) of the estimated linear model. These results
suggest that it is possible to use the daily probability of cloud cover, as observed by MODIS-Terra, as a
proxy of the cloud cover observed by Landsat 7.
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