Influences of 1DVAR Background Covariances and Observation Operators on Retrieving Tropical Cyclone Thermal Structures
Abstract
:1. Introduction
2. Data
2.1. Fengyun-3D MW Sounding Data
2.2. Hurricane Data
3. SD 1DVAR Algorithm for FY-3D MW Sounding Instruments
3.1. SD Background Fields and Covariances
3.2. Scene Detection
3.3. Bias Correction
4. Results
4.1. Effects of SD Background Covariance Matrices on 1DVAR Retrieval
4.2. Effects of Observation Operator on 1DVAR Retrieval
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dvorak, V.F. Tropical Cyclone Intensity Analysis Using Satellite Data; US Department of Commerce, National Oceanic and Atmospheric Administration: Silver Spring, MD, USA, 1984; Volume 11. [Google Scholar]
- Velden, C.; Harper, B.; Wells, F.; Beven, J.L.; Zehr, R.; Olander, T.; Mayfield, M.; Guard, C.C.; Lander, M.; Edson, R.; et al. The dvorak tropical cyclone intensity estimation technique: A satellite-based method that has endured for over 30 years. Bull. Am. Meteorol. Soc. 2006, 87, 1195–1210. [Google Scholar] [CrossRef]
- Vigh, J.L.; Schubert, W.H. Rapid development of the tropical cyclone warm core. J. Atmos. Sci. 2009, 66, 3335–3350. [Google Scholar] [CrossRef] [Green Version]
- Komaromi, W.A.; Doyle, J.D. Tropical cyclone outflow and warm core structure as revealed by HS3 dropsonde data. Mon. Weather. Rev. 2017, 145, 1339–1359. [Google Scholar] [CrossRef]
- Gao, S.; Wang, D.; Hong, H.; Wu, N.; Li, T. Evaluation of warm-core structure in reanalysis and satellite data sets using HS3 dropsonde observations: A case study of hurricane edouard (2014). J. Geophys. Res. Atmos. 2018, 123, 6713–6731. [Google Scholar] [CrossRef]
- Kidder, S.Q.; Goldberg, M.D.; Zehr, R.M.; DeMaria, M.; Purdom, J.F.W.; Velden, C.S.; Grody, N.C.; Kusselson, S.J. Satellite analysis of tropical cyclones using the advanced microwave sounding unit (AMSU). Bull. Am. Meteorol. Soc. 2000, 81, 1241–1260. [Google Scholar] [CrossRef] [Green Version]
- Weng, F.; Zou, X.; Sun, N.; Yang, H.; Tian, M.; Blackwell, W.J.; Wang, X.; Lin, L.; Anderson, K. Calibration of Suomi national polar-orbiting partnership advanced technology microwave sounder. J. Geophys. Res. Atmos. 2013, 118, 11187–111200. [Google Scholar] [CrossRef]
- Knaff, J.A.; Seseske, S.A.; DeMaria, M.; Demuth, J.L. On the influences of vertical wind shear on symmetric tropical cyclone structure derived from AMSU. Mon. Weather. Rev. 2004, 132, 2503–2510. [Google Scholar] [CrossRef] [Green Version]
- Stern, D.P.; Nolan, D.S. On the height of the warm core in tropical cyclones. J. Atmos. Sci. 2012, 69, 1657–1680. [Google Scholar] [CrossRef]
- Tian, X.; Zou, X. Capturing size and intensity changes of hurricanes irma and maria (2017) from polar-orbiting satellite microwave radiometers. J. Atmos. Sci. 2018, 75, 2509–2522. [Google Scholar] [CrossRef]
- Lin, L.; Weng, F. Estimation of hurricane maximum wind speed using temperature anomaly derived from advanced technology microwave sounder. IEEE Geosci. Remote Sens. Lett. 2018, 15, 639–643. [Google Scholar]
- Wang, X.; Jiang, H. A 13-year global climatology of tropical cyclone warm-core structures from AIRS data. Mon. Weather. Rev. 2019, 147, 773–790. [Google Scholar] [CrossRef]
- Niu, Z.; Zou, X.; Huang, W. Typhoon warm-core structures derived from FY-3D MWTS-2 observations. Remote Sens. 2021, 13, 3730. [Google Scholar] [CrossRef]
- Quanhua, L.; Fuzhong, W. One-dimensional variational retrieval algorithm of temperature, water vapor, and cloud water profiles from advanced microwave sounding unit (AMSU). IEEE Trans. Geosci. Remote Sens. 2005, 43, 1087–1095. [Google Scholar] [CrossRef]
- Han, Y.; Weng, F. Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of optimal channel selection on retrievals. J. Meteorol. Res. 2018, 32, 804–818. [Google Scholar] [CrossRef]
- Hu, H.; Han, Y. Comparing the thermal structures of tropical cyclones derived from suomi NPP ATMS and FY-3D microwave sounders. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8073–8083. [Google Scholar] [CrossRef]
- Hu, H.; Weng, F.; Han, Y.; Duan, Y. Remote sensing of tropical cyclone thermal structure from satellite microwave sounding instruments: Impacts of background profiles on retrievals. J. Meteorol. Res. 2019, 33, 89–103. [Google Scholar] [CrossRef]
- Boukabara, S.-A.; Garrett, K.; Chen, W.; Iturbide-Sanchez, F.; Grassotti, C.; Kongoli, C.; Chen, R.; Liu, Q.; Yan, B.; Weng, F. MiRS: An all-weather 1DVAR satellite data assimilation and retrieval system. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3249–3272. [Google Scholar] [CrossRef]
- Grassotti, C.; Liu, S.; Lee, Y.-K.; Liu, Q. Preliminary development and assessment of the NOAA microwave integrated retrieval system for tropical cyclones (MiRS-TC): A passive satellite microwave retrieval algorithm optimized for the tropical cyclone environment. In Proceedings of the AGU Fall Meeting, College Park, MD, USA, 24–28 February 2020. [Google Scholar]
- Weng, F.; Yu, X.; Duan, Y.; Yang, J.; Wang, J. Advanced radiative transfer modeling system (ARMS): A new-generation satellite observation operator developed for numerical weather prediction and remote sensing applications. Adv. Atmos. Sci. 2020, 37, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.-N.; Yang, J.; Weng, F. Discrete Ordinate Adding Method (DOAM), a new solver for Advanced Radiative transfer Modeling System (ARMS). Opt. Express 2021, 29, 4700–4720. [Google Scholar] [CrossRef]
- Yang, J.; Weng, F. Analysis of Microwave scattering properties of non-spherical ice particles using discrete dipole approximation. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 5309–5312. [Google Scholar]
- Hou, X.; Han, Y.; Hu, X.; Weng, F. Verification of fengyun-3D MWTS and MWHS calibration accuracy using GPS radio occultation data. J. Meteorol. Res. 2019, 33, 695–704. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Wang, Z.; Wang, H.; Sun, M.; Jiang, J.; He, J. Design of the second generation microwave humidity sounder (MWHS-II) for Chinese meteorological satellite FY-3. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4672–4675. [Google Scholar]
- Landsea, C.W.; Franklin, J.L. Atlantic hurricane database uncertainty and presentation of a new database format. Mon. Weather. Rev. 2013, 141, 3576–3592. [Google Scholar] [CrossRef]
- Grody, N.; Zhao, J.; Ferraro, R.; Weng, F.; Boers, R. Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res. Atmos. 2001, 106, 2943–2953. [Google Scholar] [CrossRef]
- Niu, Z.; Zou, X.; Ray, P.S. Development and testing of a clear-sky data selection algorithm for FY-3C/D microwave temperature sounder-2. Remote Sens. 2020, 12, 1478. [Google Scholar] [CrossRef]
- Han, Y.; Yang, J.; Hu, H.; Dong, P. Retrieval of oceanic total precipitable water vapor and cloud liquid water from fengyun-3d microwave sounding instruments. J. Meteorol. Res. 2021, 35, 371–383. [Google Scholar] [CrossRef]
- Han, Y.; Zou, X.; Weng, F. Cloud and precipitation features of Super Typhoon Neoguri revealed from dual oxygen absorption band sounding instruments on board FengYun-3C satellite. Geophys. Res. Lett. 2015, 42, 916–924. [Google Scholar] [CrossRef]
- Weng, F.; Zhao, L.; Ferraro, R.R.; Poe, G.; Li, X.; Grody, N.C. Advanced microwave sounding unit cloud and precipitation algorithms. Radio Sci. 2003, 38, 33-1–33-13. [Google Scholar] [CrossRef]
- Kummerow, C.D.; Randel, D.L.; Kulie, M.; Wang, N.-Y.; Ferraro, R.; Joseph Munchak, S.; Petkovic, V. The evolution of the goddard profiling algorithm to a fully parametric scheme. J. Atmos. Ocean. Technol. 2015, 32, 2265–2280. [Google Scholar] [CrossRef]
MWTS Channel | Center Frequency (GHz) | Polarization | Beam Width (Deg) | MWHS Channel | Center Frequency (GHz) | Polarization | Beam Width (Deg) |
---|---|---|---|---|---|---|---|
1 | 50.3 | QH | 2.2 | 1 | 89 | QV | 2 |
2 | 51.76 | QH | 2.2 | 2 | 118.75 ± 0.08 | QH | 2 |
3 | 52.8 | QH | 2.2 | 3 | 118.75 ± 0.2 | QH | 2 |
4 | 53.596 | QH | 2.2 | 4 | 118.75 ± 0.3 | QH | 2 |
5 | 54.4 | QH | 2.2 | 5 | 118.75 ± 0.8 | QH | 2 |
6 | 54.94 | QH | 2.2 | 6 | 118.75 ± 1.1 | QH | 2 |
7 | 55.5 | QH | 2.2 | 7 | 118.75 ± 2.5 | QH | 2 |
8 | 57.29 | QH | 2.2 | 8 | 118.75 ± 3.0 | QH | 2 |
9 | 57.290 ± 0.2170 | QH | 2.2 | 9 | 118.75 ± 5.0 | QH | 2 |
10 | 57.290 ± 0.322 ± 0.048 | QH | 2.2 | 10 | 150 | QV | 1.1 |
11 | 57.290 ± 0.322 ± 0.022 | QH | 2.2 | 11 | 183.31 ± 1.0 | QH | 1.1 |
12 | 57.290 ± 0.322 ± 0.010 | QH | 2.2 | 12 | 183.31 ± 1.8 | QH | 1.1 |
13 | 57.290 ± 0.322 ± 0.0045 | QH | 2.2 | 13 | 183.31 ± 3.0 | QH | 1.1 |
14 | 183.31 ± 4.5 | QH | 1.1 | ||||
15 | 183.31 ± 7.0 | QH | 1.1 |
EXP. NAME | Description |
---|---|
EXP_noSDCov | 1DVAR retrieval based on static background covariance matrix |
EXP_SDCov | 1DVAR retrieval based on SD background covariance matrices |
EXP. NAME | Description |
---|---|
EXP_noSDCov_CRTM | 1DVAR retrieval based on static background covariance matrix, using CRTM as observation operator |
EXP_noSDCov_ARMS | 1DVAR retrieval based on SD background covariance matrices, using ARMS as observation operator |
EXP_SDCov_CRTM | 1DVAR retrieval based on static background covariance matrix, using CRTM as observation operator |
EXP_SDCov_ARMS | 1DVAR retrieval based on SD background covariance matrices, using ARMS as observation operator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, H.; Weng, F. Influences of 1DVAR Background Covariances and Observation Operators on Retrieving Tropical Cyclone Thermal Structures. Remote Sens. 2022, 14, 1078. https://doi.org/10.3390/rs14051078
Hu H, Weng F. Influences of 1DVAR Background Covariances and Observation Operators on Retrieving Tropical Cyclone Thermal Structures. Remote Sensing. 2022; 14(5):1078. https://doi.org/10.3390/rs14051078
Chicago/Turabian StyleHu, Hao, and Fuzhong Weng. 2022. "Influences of 1DVAR Background Covariances and Observation Operators on Retrieving Tropical Cyclone Thermal Structures" Remote Sensing 14, no. 5: 1078. https://doi.org/10.3390/rs14051078
APA StyleHu, H., & Weng, F. (2022). Influences of 1DVAR Background Covariances and Observation Operators on Retrieving Tropical Cyclone Thermal Structures. Remote Sensing, 14(5), 1078. https://doi.org/10.3390/rs14051078