Multi-Oriented Object Detection in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Adaptive Object Orientation Features
Abstract
:1. Introduction
- An HSRI object detection dataset with OBB, WHU-RSONE-OBB, is established and published to promote the development of object detection for HSRIs.
- An adaptive object orientation regression method is proposed to obtain object regions in any direction.
- An object detection framework based on CNN with adaptive object orientation features is designed to detect various objects for HSRIs.
- The proposed method can more accurately detect objects with large aspect ratios and densely distributed objects than object detectors using a horizontal bounding box.
2. Materials and Methods
2.1. The Adaptive Object Orientation Regression Method
2.2. CNN-AOOF Framework Design
3. Results
3.1. Object Detection for WHU-RSONE-OBB
3.2. Object Detection for UCAS-AOD
3.3. Object Detection for HRSC2016
3.4. Object Detection for DOTA
4. Discussion
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HSRIs | High Spatial Resolution Remote Sensing Images |
CNN | Convolutional Neural Networks |
SVM | Support Vector Machines |
HOG | Histograms of Oriented Gradients |
R-CNN | Regional Convolutional Neural Networks |
RPN | Region Proposal Network |
CNN-SOSF | Convolutional Neural Networks with Suitable Object Scale Features |
OBB | Oriented Bounding Box |
CNN-AOOF | Convolutional Neural Networks with Adaptive Object Orientation Features |
SSD | Single Shot Multibox Detector |
YOLO | You Only Look Once |
PRC | Precision–Recall Curve |
IOU | Intersection-Over-Union |
NMS | Non-Maximum Suppression |
mAP | mean Average Precision |
References
- Li, D.; Wang, M.; Dong, Z.; Shen, X.; Shi, L. Earth observation brain (EOB): An intelligent earth observation system. Geo-Spatial Inf. Sci. 2017, 20, 134–140. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wan, G.; Cheng, G.; Meng, L.; Han, J. Object detection in optical remote sensing images: A survey and a new benchmark. ISPRS J. Photogramm. Remote Sens. 2020, 159, 296–307. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, Z.; Zhu, Y. Multiscale block fusion object detection method for large-scale high-resolution remote sensing imagery. IEEE Access 2019, 7, 99530–99539. [Google Scholar] [CrossRef]
- Schilling, H.; Bulatov, D.; Niessner, R.; Middelmann, W.; Soergel, U. Detection of vehicles in multisensor data via multibranch convolutional neural networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2018, 11, 4299–4316. [Google Scholar] [CrossRef]
- Yang, X.; Sun, H.; Fu, K.; Yang, J.; Sun, X.; Yan, M.; Guo, Z. Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks. Remote Sens. 2018, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Bai, X.; Wang, S.; Zhou, J.; Ren, P. Multiscale visual attention networks for object detection in vhr remote sensing images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 310–314. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J. A survey on object detection in optical remote sensing images. ISPRS J. Photogramm. Remote Sens. 2016, 117, 11–28. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Z.; Liu, Q.; Tang, G.; Zhai, X. Elliptic fourier transformation-based histograms of oriented gradients for rotationally invariant object detection in remote-sensing images. Int. J. Remote Sens. 2015, 36, 618–644. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Guo, L.; Qian, X.; Zhou, P.; Yao, X.; Hu, X. Object detection in remote sensing imagery using a discriminatively trained mixture model. ISPRS J. Photogramm. Remote Sens. 2018, 85, 32–43. [Google Scholar] [CrossRef]
- Diao, W.; Sun, X.; Zheng, X.; Dou, F.; Wang, H.; Fu, K. Efficient saliency-based object detection in remote sensing images using deep belief networks. IEEE Trans. Geosci. Remote Sens. 2016, 13, 137–141. [Google Scholar] [CrossRef]
- Han, J.; Zhou, P.; Zhang, D.; Cheng, G.; Guo, L.; Liu, Z.; Bu, S.; Wu, J. Efficient, simultaneous detection of multi-class geospatial targets based on visual saliency modeling and discriminative learning of sparse coding. ISPRS J. Photogramm. Remote Sens. 2014, 89, 37–48. [Google Scholar] [CrossRef]
- Han, X.; Zhong, Y.; Zhang, L. An efficient and robust integrated geospatial object detection framework for high spatial resolution remote sensing imagery. Remote Sens. 2017, 9, 666. [Google Scholar] [CrossRef] [Green Version]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 37, 1904–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision (CVPR), Boston, MA, USA, 8–12 June 2015; pp. 1440–1448. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 779–788. [Google Scholar]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single shot multibox detector. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June–1 July 2016; pp. 21–37. [Google Scholar]
- Dai, J.; Li, Y.; He, K.; Sun, J. R-FCN: Object detection via region based fully convolutional networks. In Proceedings of the Neural Information Processing Systems (NIPS), Barcelona, Spain, 4–9 December 2016; pp. 379–387. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6517–6525. [Google Scholar]
- Redmon, J.; Farhadi, A. YOLOv3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Wen, N.; Guo, R.; Ma, D.; Ye, X.; He, B. AIoU: Adaptive bounding box regression for accurate oriented object detection. Int. J. Intell. Syst. 2022, 37, 748–769. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, K.; Sun, H.; Sun, X.; Zheng, X.; Wang, H. A multi-model ensemble method based on convolutional neural networks for aircraft detection in large remote sensing images. Remote Sens. Lett. 2018, 9, 11–20. [Google Scholar] [CrossRef]
- Cheng, G.; Zhou, P.; Han, J. Learning rotation-invariant convolutional neural networks for object detection in vhr optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7405–7415. [Google Scholar] [CrossRef]
- Wu, X.; Hong, D.; Tian, J.; Chanussot, J.; LI, W.; Tao, R. Orsim detector: A novel object detection framework in optical remote sensing imagery using spatial-frequency channel features. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5146–5158. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Zhu, C.; Xiao, S. Small object detection in optical remote sensing images via modified faster R-CNN. Appl. Sci. 2018, 8, 813. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Li, W.; Lin, Z. Vehicle object detection in remote sensing imagery based on multi-perspective convolutional neural network. ISPRS Int. J. Geo-Inf. 2018, 7, 249. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate object localization in remote sensing images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2486–2498. [Google Scholar] [CrossRef]
- Guo, W.; Yang, W.; Zhang, H.; Hua, G. Geospatial object detection in high resolution satellite images based on multi-scale convolutional neural network. Remote Sens. 2018, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Zhang, T.; Ouyang, C. End-to-end airplane detection using transfer learning in remote sensing images. Remote Sens. 2018, 10, 139. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Cheng, G.; Bu, S.; You, X. Rotation-insensitive and context augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2337–2348. [Google Scholar] [CrossRef]
- Deng, Z.; Sun, H.; Zhou, S.; Zhao, J.; Lei, L.; Zou, H. Multi-scale object detection in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2018, 145, 3–22. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, M.; Wang, Y.; Zhu, Y.; Zhang, Z. Object detection in high resolution remote sensing imagery based on convolutional neural networks with suitable object scale features. IEEE Trans. Geosci. Remote Sens. 2020, 58, 2104–2114. [Google Scholar] [CrossRef]
- Liu, W.; Ma, L.; Wang, J.; Chen, H. Detection of multiclass objects in optical remote sensing images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 791–795. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Ren, Y.; Yu, J. Detection of collapsed building in post-earthquake remote sensing images based on the improved YOLOv3. Remote Sens. 2019, 12, 44. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.; Xue, N.; Long, Y.; Xia, G.S.; Lu, Q. Learning RoI Transformer for Detecting Oriented Objects in Aerial Images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Los Angeles, CA, USA, 16–19 June 2019. [Google Scholar]
- Li, C.; Xu, C.; Cui, Z.; Wang, D.; Zhang, T.; Yang, J. Feature-Attentioned Object Detection in Remote Sensing Imagery. In Proceedings of the IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 3886–3890. [Google Scholar]
- Yang, X.; Yang, J.; Yan, J.; Zhang, Y.; Zhang, T.; Guo, Z.; Sun, X.; Fu, K. SCRDet: Towards More Robust Detection for Small, Cluttered and Rotated Objects. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27 October–2 November 2019. [Google Scholar]
- Wang, J.; Ding, J.; Guo, H.; Cheng, W.; Pan, T.; Yang, W. Mask OBB: A Semantic Attention-Based Mask Oriented Bounding Box Representation for Multi-Category Object Detection in Aerial Images. Remote Sens. 2019, 11, 2930. [Google Scholar] [CrossRef] [Green Version]
- Xia, G.; Bai, X.; Ding, J.; Zhu, Z.; Belongie, S.; Luo, J.; Datcu, M.; Pelillo, M.; Zhang, L. Dota: A large-scale dataset for object detection in aerial images. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–22 June 2018; pp. 3974–3983. [Google Scholar]
- Qian, X.; Lin, S.; Cheng, G.; Yao, X.; Ren, H.; Wang, W. Object detection in remote sensing images based on improved bounding box regression and multi-level features fusion. Remote Sens. 2020, 12, 143. [Google Scholar] [CrossRef] [Green Version]
- Henderson, P.; Ferrari, V. End-to-end training of object class detectors for mean average precision. In Proceedings of the Asian Conference on Computer Vision (ACCV), Kyoto, Japan, 30 November–4 December 2016; pp. 198–213. [Google Scholar]
- Zhu, H.; Chen, X.; Dai, W.; Fu, K.; Ye, Q.; Jiao, J. Orientation robust object detection in aerial images using deep convolutional neural network. In Proceedings of the IEEE International Conference Image Processing, Quebec City, QC, Canada, 27–30 September 2015; pp. 3735–3739. [Google Scholar]
- Qian, W.; Yang, X.; Peng, S.; Guo, Y.; Yan, J. Learning modulated loss for rotated object detection. arXiv 2019, arXiv:1911.08299. [Google Scholar]
- Yang, X.; Yan, J.; Feng, Z.; He, T. R3Det: Refined single-stage detector with feature refinement for rotating object. In Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar]
- Liu, Z.; Wang, H.; Weng, L.; Yang, Y. Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1074–1078. [Google Scholar] [CrossRef]
Object | Number |
---|---|
Airplane | 15,703 |
Storage-tank | 24,692 |
Ship | 10,263 |
Airplane | Storage-Tank | Ship | mAP | |
---|---|---|---|---|
Faster-RCNN [16] | 0.9486 | 0.5634 | 0.7638 | 0.7586 |
CNN-SOSF [33] | 0.9521 | 0.7461 | 0.7520 | 0.8167 |
YOLOv2 [20] | 0.7116 | 0.3166 | 0.4422 | 0.4901 |
YOLOv3 [21] | 0.9776 | 0.8709 | 0.7865 | 0.8784 |
CNN-AOOF | 0.9857 | 0.8831 | 0.7920 | 0.8869 |
Time/Per Image (s) | |
---|---|
Faster-RCNN [16] | 0.467 |
CNN-SOSF [33] | 0.528 |
YOLOv2 [20] | 0.102 |
YOLOv3 [21] | 0.139 |
CNN-AOOF | 0.233 |
Airplane | Car | mAP | |
---|---|---|---|
Faster-RCNN [16] | 0.9270 | 0.7582 | 0.8426 |
CNN-SOSF [33] | 0.9339 | 0.7965 | 0.8652 |
YOLOv2 [20] | 0.7426 | 0.1501 | 0.4463 |
YOLOv3 [21] | 0.9414 | 0.8805 | 0.9109 |
CNN-AOOF | 0.9488 | 0.8996 | 0.9242 |
PL | SH | ST | BD | TC | BC | GTF | HA | BR | LV | SV | HC | RA | SBF | SP | mAP | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RoI Trans [36] | 0.8864 | 0.8359 | 0.8146 | 0.7852 | 0.9074 | 0.7727 | 0.7592 | 0.6283 | 0.4344 | 0.7368 | 0.6881 | 0.4767 | 0.5354 | 0.5839 | 0.5893 | 0.6956 |
SCRDet [37] | 0.8998 | 0.7241 | 0.8686 | 0.8065 | 0.9085 | 0.8794 | 0.6836 | 0.6625 | 0.5209 | 0.6032 | 0.6836 | 0.6521 | 0.6668 | 0.6502 | 0.6824 | 0.7261 |
Li et al. [38] | 0.9021 | 0.7956 | 0.8468 | 0.7958 | 0.9083 | 0.834 | 0.7641 | 0.7417 | 0.4549 | 0.6827 | 0.7318 | 0.6486 | 0.6542 | 0.534 | 0.6969 | 0.7328 |
Mask OBB [39] | 0.8956 | 0.8563 | 0.8648 | 0.8595 | 0.8985 | 0.8381 | 0.729 | 0.7394 | 0.5421 | 0.7416 | 0.7652 | 0.6332 | 0.6964 | 0.5489 | 0.6906 | 0.7533 |
CNN-AOOF | 0.8821 | 0.7763 | 0.8612 | 0.8162 | 0.8954 | 0.8531 | 0.7293 | 0.8063 | 0.588 | 0.7882 | 0.7102 | 0.6361 | 0.6092 | 0.6263 | 0.7784 | 0.7571 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Z.; Wang, M.; Wang, Y.; Liu, Y.; Feng, Y.; Xu, W. Multi-Oriented Object Detection in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Adaptive Object Orientation Features. Remote Sens. 2022, 14, 950. https://doi.org/10.3390/rs14040950
Dong Z, Wang M, Wang Y, Liu Y, Feng Y, Xu W. Multi-Oriented Object Detection in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Adaptive Object Orientation Features. Remote Sensing. 2022; 14(4):950. https://doi.org/10.3390/rs14040950
Chicago/Turabian StyleDong, Zhipeng, Mi Wang, Yanli Wang, Yanxiong Liu, Yikai Feng, and Wenxue Xu. 2022. "Multi-Oriented Object Detection in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Adaptive Object Orientation Features" Remote Sensing 14, no. 4: 950. https://doi.org/10.3390/rs14040950
APA StyleDong, Z., Wang, M., Wang, Y., Liu, Y., Feng, Y., & Xu, W. (2022). Multi-Oriented Object Detection in High-Resolution Remote Sensing Imagery Based on Convolutional Neural Networks with Adaptive Object Orientation Features. Remote Sensing, 14(4), 950. https://doi.org/10.3390/rs14040950