Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques
Abstract
:1. Introduction
1.1. Street Environment and Property Values
1.2. Hypothesis and Knowledge Gap
1.3. Contribution
2. Related Works
2.1. Conventional Street Environment Measures in HPM Studies
2.2. Measuring Objective Streetscape Features from SVI
2.3. Lack of Urban-Scale Perception Mapping
2.4. Crowdsourcing Visual Survey and Deep Learning for Perception Mapping
3. Data and Methods
3.1. Research Framework and Study Area
3.1.1. Conceptual Framework
3.1.2. Analytical Framework
3.1.3. Study Area
3.2. Selection of the Six Perceptual Qualities
Perceptual Quality | Qualitative Definition | Significant Physical Features | Subjective Score Questions | Objective Score Equations (Based on Their Operational Definitions) |
---|---|---|---|---|
1. Greenness | Urban green spaces that are an essential element in streetscape, including forests, greenbelts, and lawns [35] | Tree view [34,35,45] | Which place looks greener? | The proportion of green space intermixed with building façades [35] |
2. Walkability | The psychological impact of the surrounding visual elements on the walking experience, such as the sense of comfort and pleasure for walking [35] | Pavement, sidewalk, fence, tree, grass [35,62] | Which place looks more Walkable? | The proportional relationship between the pavement, fence, and the overall road on walking experience [35] (2.2) |
3. Safety | An individual’s experience of the risk of becoming a victim of crime and disturbance of public order [74] | Visual and physical connection and openness to adjacent spaces, physical condition and maintenance, lighting quality in space after dark, presence of surveillance cameras, security guards, guides, ushers, etc. | Which place looks safer? | Perceived safety from crime is affected by the physical condition and maintenance, the configuration of spaces, the types of land uses, the alterations and modifications made to the environment, and the presence or absence of, and the type of, people [63] (2.3) |
4. Imageability | The quality of a place that makes it distinct, recognizable and memorable [37]. | People, proportion of historic buildings, courtyards/plazas/parks, outdoor dining, buildings with non-rectangular silhouettes, noise level, major landscape features, buildings with identifiers [37] | Which place has better Imageability? | The proportions of the buildings, signs, and symbols as a proxy of street richness and diversity [35] (2.4) |
5. Enclosure | The degree to which streets and other public spaces are visually defined by buildings, walls, trees, and other vertical elements [37] | Proportion of street wall, proportion of sky, long sight lines, proportion of sky ahead [37] | Which place has better Enclosure? | The degree to which street canyons are visually enclosed by the sides of buildings, walls, trees and other vertical elements and the space of the horizontal ground between them [35] (2.5) |
6. Complexity | The visual richness of a place, which depends on the variety of the numbers and types of buildings, ornamentation, landscape elements, street furniture, signage, and human activity [37] | People, buildings, dominant building colors, accent colors, outdoor dining, public art [37] | Which place has better Complexity? | The numbers and kinds of buildings, architectural diversity and ornamentation, landscape elements, street furniture, signage, and human activity [60] (2.6) |
3.3. Scoring Subjective and Objective Perceptions
3.3.1. Collection of SVIs
3.3.2. Collecting Subjective Perception Scores from the Online Survey
3.3.3. Classification of the Physical Features
3.3.4. Prediction of Subjective Perception Scores
3.3.5. Calculation of Objective Perceptual Scores
3.3.6. Verification of Scores
3.4. Hedonic Housing Price Model
3.4.1. Housing Transactional Price
3.4.2. Independent Variables
3.4.3. Model Architecture
4. Analysis Results
4.1. Descriptive Statistics of the Segmentation
4.2. Subjective and Objective Scores and Correlation Analysis
4.2.1. Subjective Scores
4.2.2. Objective Scores
4.2.3. Correlation Analysis for Subjective and Objective Scores Respectively
4.2.4. Coherence and Divergence between Subjective and Objective Scores
4.3. Hedonic Price Model Selection
4.3.1. Streetscape Perception Attributes
4.3.2. Location Attributes
4.3.3. Neighborhood Attributes
4.3.4. Structure Attributes
5. Discussion
5.1. The Significance of Streetscape Perceptual Qualities
5.2. Coherence and Divergence between Subjective and Objective Measures
5.3. The Effectiveness of the Integrated Big Data Framework
6. Conclusions
Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Model1 | Model2 | Model3 | Average | Delta X | Mean X | |
---|---|---|---|---|---|---|
Structure Attributes | ||||||
FLAREA | −11.5 | −11.5 | −11.5 | −11.5 | 1 unit change | 85 m2 |
BDRM | −154.8 | −114.7 | −137.6 | −135.7 | 2.1 | |
BATH | 1342.0 | 1307.6 | 1307.6 | 1319.0 | 1.2 | |
CSTRYR | 160.6 | 166.3 | 160.6 | 162.5 | 1998 | |
ELEVTR | 2248.1 | 2265.3 | 2225.1 | 2246.2 | Y/N (1/0) | 0.4 |
HGHT | −843.0 | −860.2 | −854.5 | −852.6 | Y/N (1/0) | 0.4 |
TOWER_SLAB | −3641.7 | −3549.9 | −3532.7 | −3574.8 | Y/N (1/0) | 0.09 |
STH_NTH | 412.9 | 372.8 | 401.4 | 395.7 | Y/N (1/0) | 0.8 |
DÉCOR | 1330.5 | 1301.8 | 1313.3 | 1315.2 | Y/N (1/0) | 0.52 |
Location Attributes | ||||||
CNTY_FX | −9560.1 | −9422.4 | −9864.0 | −9615.5 | Y/N (1/0) | 0.025 |
CNTY_HK | 1026.5 | 1726.2 | 1290.4 | 1347.7 | Y/N (1/0) | 0.038 |
CNTY_HP | 3280.4 | 3974.3 | 3934.1 | 3729.6 | Y/N (1/0) | 0.032 |
CNTY_JA | 3699.0 | 4197.9 | 4278.2 | 4058.4 | Y/N (1/0) | 0.024 |
CNTY_JD | −3418.0 | −3395.1 | −3400.8 | −3404.6 | Y/N (1/0) | 0.041 |
CNTY_JS | −9766.5 | −7856.8 | −9611.7 | −9078.3 | Y/N (1/0) | 0.055 |
CNTY_PD | 1525.5 | 1278.9 | 1548.4 | 1450.9 | Y/N (1/0) | 0.234 |
CNTY_PT | −1175.7 | −820.1 | −751.3 | −915.7 | Y/N (1/0) | 0.073 |
CNTY_QP | −2873.2 | −3286.1 | −3268.9 | −3142.7 | Y/N (1/0) | 0.017 |
CNTY_SJ | −2878.9 | −2615.1 | −3016.6 | −2836.9 | Y/N (1/0) | 0.055 |
CNTY_YP | 1892.5 | 2334.1 | 2202.2 | 2142.9 | Y/N (1/0) | 0.077 |
CNTY_ZB | 1250.2 | 1382.1 | 1645.9 | 1426.1 | Y/N (1/0) | 0.045 |
lnD2Ctr | −622.8 | −617.1 | −621.1 | −620.3 | 10% change | 12.62 km |
Neighborhood Attributes | ||||||
LN(DENWRK) | 11.5 | 11.5 | 10.3 | 11.1 | 10% change | 9500/km2 |
LN(DENSRV) | 14.3 | 6.9 | 9.7 | 10.3 | 10% change | 115/km2 |
LN(A2MTR) | 122.7 | 119.3 | 122.7 | 121.6 | 10% change | 5.7 |
LN(A2SCH) | 306.2 | 293.6 | 300.5 | 300.1 | 10% change | 7 |
Subjective Street Perception | ||||||
S1_GREEN | / | −1876.5 | / | −1876.5 | 0.1 score change | 0.8 |
S2_WALKB | / | −1081.6 | / | −1081.6 | 0.1 score change | 0.6 |
S4_SAFTY | / | 1075.9 | / | 1075.9 | 0.1 score change | 0.7 |
S4_IMGBL | / | 768.5 | / | 768.5 | 0.1 score change | 0.7 |
S5_ENCLS | / | −228.8 | / | −228.8 | 0.1 score change | 0.7 |
Objective Street Scores | ||||||
O1_GREEN | / | / | 197.3 | 197.3 | 0.1 score change | 0.4 |
O2_WALKB | / | / | −73.4 | −73.4 | 0.1 score change | 0.6 |
O3_SAFTY | / | / | 306.2 | 306.2 | 0.1 score change | 0.4 |
O4_IMGBL | / | / | −422.1 | −422.1 | 0.1 score change | 0.6 |
O5_ENCLO | / | / | −173.2 | −173.2 | 0.1 score change | 0.6 |
Y: Average Price | 57,349 RMB/m2 |
References
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep Learning the City: Quantifying Urban Perception at a Global Scale. arXiv 2016, arXiv:1608.01769. [Google Scholar]
- Salesses, P.; Schechtner, K.; Hidalgo, C.A. The Collaborative Image of the City: Mapping the Inequality of Urban Perception. PLoS ONE 2013, 8, e68400. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Páez, A.; Liu, D. Built environment and violent crime: An environmental audit approach using Google Street View. Comput. Environ. Urban Syst. 2017, 66, 83–95. [Google Scholar] [CrossRef]
- Naik, N.; Philipoom, J.; Raskar, R.; Hidalgo, C. Streetscore—Predicting the Perceived Safety of One Million Streetscapes. In Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Columbus, OH, USA, 23–28 June 2014; IEEE: Columbus, OH, USA, 2014; pp. 793–799. [Google Scholar]
- Wang, R.; Yuan, Y.; Liu, Y.; Zhang, J.; Liu, P.; Lu, Y.; Yao, Y. Using street view data and machine learning to assess how perception of neighborhood safety influences urban residents’ mental health. Health Place 2019, 59, 102186. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Grekousis, G. Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique. Comput. Environ. Urban Syst. 2019, 78, 101386. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Yuan, Y.; Zhang, J.; Liu, P.; Yao, Y. The linkage between the perception of neighbourhood and physical activity in Guangzhou, China: Using street-view imagery with deep learning techniques. Int. J. Health Geogr. 2019, 18, 18. [Google Scholar] [CrossRef]
- Brownson, R.C.; Chang, J.J.; Eyler, A.A.; Ainsworth, B.E.; Kirtland, K.A.; Saelens, B.E.; Sallis, J.F. Measuring the Environment for Friendliness Toward Physical Activity: A Comparison of the Reliability of 3 Questionnaires. Am. J. Public Health 2004, 94, 473–483. [Google Scholar] [CrossRef]
- Jackson, L.E. The relationship of urban design to human health and condition. Landsc. Urban Plan. 2003, 64, 191–200. [Google Scholar] [CrossRef]
- Jay, O.; Capon, A.; Berry, P.; Broderick, C.; de Dear, R.; Havenith, G.; Honda, Y.; Kovats, R.S.; Ma, W.; Malik, A.; et al. Reducing the health effects of hot weather and heat extremes: From personal cooling strategies to green cities. Lancet 2021, 398, 709–724. [Google Scholar] [CrossRef]
- Miranda, A.S.; Fan, Z.; Duarte, F.; Ratti, C. Desirable streets: Using deviations in pedestrian trajectories to measure the value of the built environment. Comput. Environ. Urban Syst. 2021, 86, 101563. [Google Scholar] [CrossRef]
- Zeng, L.; Lu, J.; Li, W.; Li, Y. A fast approach for large-scale Sky View Factor estimation using street view images. Build. Environ. 2018, 135, 74–84. [Google Scholar] [CrossRef]
- Li, X.; Yoshimura, Y.; Tu, W.; Ratti, C. A Pedestrian-Level Strategy to Minimize Outdoor Sunlight Exposure. In Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities: Designing for Sustainability; Pardalos, P.M., Rassia, S.T., Tsokas, A., Eds.; Springer Optimization and Its Applications; Springer International Publishing: Cham, Germany, 2022; pp. 123–134. ISBN 978-3-030-84459-2. [Google Scholar]
- Li, X.; Cai, B.Y.; Qiu, W.; Zhao, J.; Ratti, C. A novel method for predicting and mapping the occurrence of sun glare using Google Street View. Transp. Res. Part C Emerg. Technol. 2019, 106, 132–144. [Google Scholar] [CrossRef]
- Wang, R.; Feng, Z.; Pearce, J.; Yao, Y.; Li, X.; Liu, Y. The distribution of greenspace quantity and quality and their association with neighbourhood socioeconomic conditions in Guangzhou, China: A new approach using deep learning method and street view images. Sustain. Cities Soc. 2021, 66, 102664. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, F.; Gao, S.; Peng, W.; Ratti, C. Human settlement value assessment from a place perspective: Considering human dynamics and perceptions in house price modeling. Cities 2021, 118, 103333. [Google Scholar] [CrossRef]
- Anderson, S.T.; West, S.E. Open space, residential property values, and spatial context. Reg. Sci. Urban Econ. 2006, 36, 773–789. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yao, X.; Liu, Y.; Zhu, Y.; Chen, W.; Zhao, X.; Chi, T. Measuring Impacts of Urban Environmental Elements on Housing Prices Based on Multisource Data—A Case Study of Shanghai, China. ISPRS Int. J. Geo-Inf. 2020, 9, 106. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.; Jia, T.; Zhang, X.; Li, S.; Zhang, Y. Do street-level scene perceptions affect housing prices in Chinese megacities? An analysis using open access datasets and deep learning. PLoS ONE 2019, 14, e0217505. [Google Scholar] [CrossRef]
- Orland, B.; Vining, J.; Ebreo, A. The Effect of Street Trees on Perceived Values of Residential Property. Environ. Behav. 1992, 24, 298–325. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, R. Impacts of Street-Visible Greenery on Housing Prices: Evidence from a Hedonic Price Model and a Massive Street View Image Dataset in Beijing. ISPRS Int. J. Geo-Inf. 2018, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Zhang, F.; Peng, W.; Gao, S.; Rao, J.; Duarte, F.; Ratti, C. Understanding house price appreciation using multi-source big geo-data and machine learning. Land Use Policy 2020, 111, 104919. [Google Scholar] [CrossRef]
- Cavailhès, J.; Brossard, T.; Hilal, M.; Joly, D.; Tourneux, F.-P.; Tritz, C.; Wavresky, P. Pricing the Homebuyer’s Countryside View. In Hedonic Methods in Housing Markets: Pricing Environmental Amenities and Segregation; Baranzini, A., Ramirez, J., Schaerer, C., Thalmann, P., Eds.; Springer: New York, NY, USA, 2008; pp. 83–99. ISBN 978-0-387-76815-1. [Google Scholar]
- Rosen, S. Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition. J. Polit. Econ. 1974, 82, 34–55. [Google Scholar] [CrossRef]
- Ye, Y.; Xie, H.; Fang, J.; Jiang, H.; Wang, D. Daily Accessed Street Greenery and Housing Price: Measuring Economic Performance of Human-Scale Streetscapes via New Urban Data. Sustainability 2019, 11, 1741. [Google Scholar] [CrossRef] [Green Version]
- Jim, C.Y.; Chen, W.Y. Value of scenic views: Hedonic assessment of private housing in Hong Kong. Landsc. Urban Plan. 2009, 91, 226–234. [Google Scholar] [CrossRef]
- Jiao, L.; Xu, G.; Jin, J.; Dong, T.; Liu, J.; Wu, Y.; Zhang, B. Remotely sensed urban environmental indices and their economic implications. Habitat Int. 2017, 67, 22–32. [Google Scholar] [CrossRef]
- Lin, L.; Moudon, A.V. Objective versus subjective measures of the built environment, which are most effective in capturing associations with walking? Health Place 2010, 16, 339–348. [Google Scholar] [CrossRef]
- Nyunt, M.S.Z.; Shuvo, F.K.; Eng, J.Y.; Yap, K.B.; Scherer, S.; Hee, L.M.; Chan, S.P.; Ng, T.P. Objective and subjective measures of neighborhood environment (NE): Relationships with transportation physical activity among older persons. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 108. [Google Scholar] [CrossRef] [Green Version]
- Qiu, W.; Li, W.; Liu, X.; Huang, X. Subjectively Measured Streetscape Perceptions to Inform Urban Design Strategies for Shanghai. ISPRS Int. J. Geo-Inf. 2021, 10, 493. [Google Scholar] [CrossRef]
- Kang, B.; Moudon, A.V.; Hurvitz, P.M.; Reichley, L.; Saelens, B.E. Walking Objectively Measured: Classifying Accelerometer Data with GPS and Travel Diaries. Med Sci Sports Exerc 2013, 45, 1419–1428. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Han, Z.; Xu, W.; Liu, X.; Qiu, W.; Li, W. Evolution of Historical Urban Landscape with Computer Vision and Machine Learning: A Case Study of Berlin. J. Digit. Landsc. Archit. 2021, 436–451. [Google Scholar] [CrossRef]
- Lee, C.; Moudon, A.V. Correlates of Walking for Transportation or Recreation Purposes. J. Phys. Act. Health 2006, 3, S77–S98. [Google Scholar] [CrossRef]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban greenery using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring human perceptions of streetscapes to better inform urban renewal: A perspective of scene semantic parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Qiu, W.; Zhang, Z.; Liu, X.; Li, W.; Li, X.; Xu, X.; Huang, X. Subjective or objective measures of street environment, which are more effective in explaining housing prices? Landsc. Urban Plan. 2022, 221, 104358. [Google Scholar] [CrossRef]
- Ewing, R.; Handy, S. Measuring the Unmeasurable: Urban Design Qualities Related to Walkability. J. Urban Des. 2009, 14, 65–84. [Google Scholar] [CrossRef]
- Donovan, G.H.; Butry, D.T. Trees in the city: Valuing street trees in Portland, Oregon. Landsc. Urban Plan. 2010, 94, 77–83. [Google Scholar] [CrossRef]
- Pandit, R.; Polyakov, M.; Sadler, R. Valuing public and private urban tree canopy cover. Aust. J. Agric. Resour. Econ. 2014, 58, 453–470. [Google Scholar] [CrossRef] [Green Version]
- Laverne, R.J.; Winson-Geideman, K. The influence of trees and landscaping on rental rates at office buildings. J. Arboric. 2003, 29, 281–290. [Google Scholar] [CrossRef]
- Kim, H.; Carruthers, J.I. Environmental Benefits of Green Space: Focusing on the Seoul Metropolitan Area; Social Science Research Network: Rochester, NY, USA, 2015. [Google Scholar]
- Willis, K.G.; Powe, N.A.; Garrod, G.D. Estimating the Value of Improved Street Lighting: A Factor Analytical Discrete Choice Approach. Urban Stud. 2005, 42, 2289–2303. [Google Scholar] [CrossRef]
- Larsen, J.E.; Blair, J.P. Price effects of surface street traffic on residential property. Int. J. Hous. Mark. Anal. 2014, 7, 189–203. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, L.; Mcbride, J.; Gong, P. Can you see green? Assessing the visibility of urban forests in cities. Landsc. Urban Plan. 2009, 91, 97–104. [Google Scholar] [CrossRef]
- Seiferling, I.; Naik, N.; Ratti, C.; Proulx, R. Green streets—Quantifying and mapping urban trees with street-level imagery and computer vision. Landsc. Urban Plan. 2017, 165, 93–101. [Google Scholar] [CrossRef]
- Griew, P.; Hillsdon, M.; Foster, C.; Coombes, E.; Jones, A.; Wilkinson, P. Developing and testing a street audit tool using Google Street View to measure environmental supportiveness for physical activity. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, C.M.; Wilson, J.S.; Baker, E.A.; Miller, D.K.; Schootman, M. Using Google Street View to audit the built environment: Inter-rater reliability results. Ann. Behav. Med. 2012, 45, S108–S112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rundle, A.G.; Bader, M.D.M.; Richards, C.A.; Neckerman, K.M.; Teitler, J.O. Using Google Street View to Audit Neighborhood Environments. Am. J. Prev. Med. 2011, 40, 94–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naik, N.; Raskar, R.; Hidalgo, C.A. Cities Are Physical Too: Using Computer Vision to Measure the Quality and Impact of Urban Appearance. Am. Econ. Rev. 2016, 106, 128–132. [Google Scholar] [CrossRef] [Green Version]
- Hara, K.; Sun, J.; Moore, R.; Jacobs, D.; Froehlich, J. Tohme: Detecting curb ramps in google street view using crowdsourcing, computer vision, and machine learning. In Proceedings of the 27th Annual ACM Symposium on User Interface Software and Technology—UIST ‘14, Honolulu, HI, USA, 5–8 October 2014; ACM Press: New York, NY, USA, 2014; pp. 189–204. [Google Scholar]
- Yin, L.; Wang, Z. Measuring visual enclosure for street walkability: Using machine learning algorithms and Google Street-view imagery. Appl. Geogr. 2016, 76, 147–153. [Google Scholar] [CrossRef]
- Middel, A.; Lukasczyk, J.; Zakrzewski, S.; Arnold, M.; Maciejewski, R. Urban form and composition of street canyons: A human-centric big data and deep learning approach. Landsc. Urban Plan. 2019, 183, 122–132. [Google Scholar] [CrossRef]
- Humpel, N.; Owen, N.; Iverson, D.; Leslie, E.; Bauman, A. Perceived environment attributes, residential location, and walking for particular purposes. Am. J. Prev. Med. 2004, 26, 119–125. [Google Scholar] [CrossRef]
- Yin, L.; Cheng, Q.; Wang, Z.; Shao, Z. ‘Big data’ for pedestrian volume: Exploring the use of Google Street View images for pedestrian counts. Appl. Geogr. 2015, 63, 337–345. [Google Scholar] [CrossRef]
- Zhang, F.; Zhou, B.; Liu, L.; Liu, Y.; Fung, H.H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Naik, N.; Kominers, S.D.; Raskar, R.; Glaeser, E.L.; Hidalgo, C. Do People Shape Cities, or Do Cities Shape People? The Co-Evolution of Physical, Social, and Economic Change in Five Major U.S. Cities; Social Science Research Network: Rochester, NY, USA, 2015. [Google Scholar]
- Lynch, K. The Image of the City; The MIT Press: Cambridge, MA, USA, 1960; Volume 11, ISBN 978-0-262-12004-3. [Google Scholar]
- Nasar, J.L. The Evaluative Image of the City. J. Am. Plan. Assoc. 1990, 56, 41–53. [Google Scholar] [CrossRef]
- Brownson, R.C.; Hoehner, C.M.; Day, K.; Forsyth, A.; Sallis, J.F. Measuring the built environment for physical activity: State of the science. Am. J. Prev. Med. 2009, 36, S99–S123.e12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ewing, R.; Handy, S.; Brownson, R.C.; Clemente, O.; Winston, E. Identifying and Measuring Urban Design Qualities Related to Walkability. J. Phys. Act. Health 2006, 3, S223–S240. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, T.; Lobel, H.; Rocco, V.; Hurtubia, R. Explaining subjective perceptions of public spaces as a function of the built environment: A massive data approach. Landsc. Urban Plan. 2019, 181, 169–178. [Google Scholar] [CrossRef]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in neighborhood visual walkability: Using street-view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Mehta, V. Evaluating Public Space. J. Urban Des. 2014, 19, 53–88. [Google Scholar] [CrossRef]
- DigitalFUTURES DigitalFUTURES WORLD: Manifesto. Available online: https://www.digitalfutures.world/manifesto (accessed on 16 February 2021).
- Minka, T.; Cleven, R.; Zaykov, Y. TrueSkill 2: An Improved Bayesian Skill Rating System; Microsoft: Seattle, WA, USA, 2018; p. 24. [Google Scholar]
- Microsoft TrueSkillTM Ranking System; Microsoft Corporation: Redmond, DC, USA, 2005.
- Kim, E.J.; Kim, H. Neighborhood Walkability and Housing Prices: A Correlation Study. Sustainability 2020, 12, 593. [Google Scholar] [CrossRef] [Green Version]
- Leinberger, C.; Alfonzo, M. Walk This Way: The Economic Promise of Walkable Places in Metropolitan Washington, D.C.; Metropolitan Policy Program at the Brookings Institution: Washington, DC, USA, 2012; p. 22. [Google Scholar]
- Ceccato, V.; Wilhelmsson, M. Do crime hot spots affect housing prices? Nord. J. Criminol. 2020, 21, 84–102. [Google Scholar] [CrossRef] [Green Version]
- McCluskey, J.J.; Rausser, G.C. Estimation of Perceived Risk and Its Effect on Property Values. Land Econ. 2001, 77, 42–55. [Google Scholar] [CrossRef] [Green Version]
- Cetintahra, G.E.; Cubukcu, E. The influence of environmental aesthetics on economic value of housing: An empirical research on virtual environments. J. Hous. Built Environ. 2015, 30, 331–340. [Google Scholar] [CrossRef]
- Quercia, D.; O’Hare, N.K.; Cramer, H. Aesthetic capital: What makes london look beautiful, quiet, and happy? In Proceedings of the 17th ACM Conference on Computer Supported Cooperative Work & Social Computing, Baltimore, MD, USA, 15–19 February 2014; Association for Computing Machinery: New York, NY, USA, 2014; pp. 945–955. [Google Scholar]
- Buonanno, P.; Montolio, D.; Raya-vílchez, J.M. Housing prices and crime perception. Empir. Econ. 2013, 45, 305–321. [Google Scholar] [CrossRef]
- Jansson, C. Factors Important to Street Users’ Perceived Safety on a Main Street. Masters Paper, KTH Royal Institute of Technology: Stockholm, Sweden, 2019. [Google Scholar]
- Caprotti, F.; Springer, C.; Harmer, N. ‘Eco’ For Whom? Envisioning Eco-urbanism in the Sino-Singapore Tianjin Eco-city, China. Int. J. Urban Reg. Res. 2015, 39, 495–517. [Google Scholar] [CrossRef]
- Guo, H.; Su, M.F. Impact of Residential Real-estate Development on Green Construction. Appl. Mech. Mater. 2013, 275–277, 2756–2760. [Google Scholar] [CrossRef]
- Shiuh-Shen, C. Chinese eco-cities: A perspective of land-speculation-oriented local entrepreneurialism. China Inf. 2013, 27, 173–196. [Google Scholar] [CrossRef]
- Jim, C.Y.; Chen, W.Y. Impacts of urban environmental elements on residential housing prices in Guangzhou (China). Landsc. Urban Plan. 2006, 78, 422–434. [Google Scholar] [CrossRef]
- NYU; UN Habitat; Lincoln Institute Atlas of Urban Expansion—Shanghai, Shanghai. Available online: http://www.atlasofurbanexpansion.org/cities/view/Shanghai_Shanghai (accessed on 17 February 2021).
- BAIDU. Baidu Map API SDK. Available online: https://lbsyun.baidu.com/index.php?title=viewstatic (accessed on 2 March 2021).
- Dopico, C. How to Add Baidu Maps to Your Application without Learning Chinese. Available online: https://medium.com/trabe/how-to-add-baidu-maps-to-your-application-without-learning-chinese-797b095ffcc8 (accessed on 2 March 2021).
- Naik, N.; Kominers, S.D.; Raskar, R.; Glaeser, E.L.; Hidalgo, C.A. Computer Vision Uncovers Predictors of Physical Urban Change. PNAS 2017, 114, 7571–7576. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, R.L.; Zeng-Treitler, Q.; Kandula, S.; Ngo, L.H. Predicting sample size required for classification performance. BMC Med. Inform. Decis. Mak. 2012, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Beleites, C.; Neugebauer, U.; Bocklitz, T.; Krafft, C.; Popp, J. Sample size planning for classification models. Anal. Chim. Acta 2013, 760, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Haldar, M. How Much Training Data Do You Need? Available online: https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956 (accessed on 28 March 2021).
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 2881–2890. [Google Scholar]
- Verma, D.; Jana, A.; Ramamritham, K. Predicting human perception of the urban environment in a spatiotemporal urban setting using locally acquired street view images and audio clips. Build. Environ. 2020, 186, 107340. [Google Scholar] [CrossRef]
- Ito, K.; Biljecki, F. Assessing bikeability with street-view imagery and computer vision. Transp. Res. Part C Emerg. Technol. 2021, 132, 103371. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, Z.; Yuan, Z.; Liu, P.; Bie, Y.; Zhang, J.; Wang, R.; Wang, J.; Guan, Q. A human-machine adversarial scoring framework for urban perception assessment using street-view images. Int. J. Geogr. Inf. Sci. 2019, 33, 2363–2384. [Google Scholar] [CrossRef]
- Park, K.; Ewing, R.; Sabouri, S.; Larsen, J. Street life and the built environment in an auto-oriented US region. Cities 2019, 88, 243–251. [Google Scholar] [CrossRef]
- Dubé, J.; Legros, D. Spatial econometrics and the hedonic pricing model: What about the temporal dimension? J. Prop. Res. 2014, 31, 333–359. [Google Scholar] [CrossRef]
- Bourassa, S.C.; Cantoni, E.; Hoesli, M. Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods. J. Real-estate Res. 2010, 32, 139–160. [Google Scholar] [CrossRef]
- Wen, H.; Xiao, Y.; Zhang, L. School district, education quality, and housing price: Evidence from a natural experiment in Hangzhou, China. Cities 2017, 66, 72–80. [Google Scholar] [CrossRef]
- Kutner, M.H.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models, 4th ed.; McGraw-Hill/Irwin: New York, NY, USA, 2004. [Google Scholar]
- Chiu-Shee, C.; Ryan, B.D.; Vale, L.J. Ending gated communities: The rationales for resistance in China. Hous. Stud. 2021, 1–30. [Google Scholar] [CrossRef]
- Qiu, W.; Li, W.; Liu, X.; Huang, X. Subjectively Measured Human Perception of Street Quality for Shanghai with Large-Scale Application of Computer Vision. In Proceedings of the 2021 DigitalFUTURES—The 3rd International Conference on Computational Design and Robotic Fabrication (CDRF 2021), Online, 26 June 2021; Springer: Shanghai, China, 2022. [Google Scholar]
- Ewing, R.; Clemente, O. Measuring Urban Design: Metrics for Livable Places; Island Press: Washington, DC, USA, 2013; ISBN 978-1-61091-209-9. [Google Scholar]
Variables | Description | Count | Mean | Std. Dev. | Min | Max | Data Source | |
---|---|---|---|---|---|---|---|---|
PRICE | Transactional price (RMB/m2) | 40,159 | 57,349 | 21,683 | 10,400 | 250,813 | Lianjia.com | |
STRUCTURAL ATTRIBUTES | ||||||||
FLAREA | Total floor area of the unit (m2) | 40,159 | 85 | 43 | 15 | 588 | Web scraping from Lianjia.com | |
BEDRM | Number of bedrooms | 40,159 | 2.1 | 0.8 | 1 | 8 | ||
LIVRM | Number of living rooms | 40,159 | 1.4 | 0.6 | 0 | 5 | ||
KITCH | Number of kitchens | 40,159 | 1.0 | 0.2 | 0 | 5 | ||
BATH | Number of bathrooms | 40,159 | 1.2 | 0.5 | 0 | 7 | ||
TTLFLR | Total floors of the building | 40,159 | 11.0 | 7.9 | 1 | 62 | ||
CSTRYR | Construction year of the building | 40,159 | 1998 | 9.4 | 1912 | 2019 | ||
Values | Count | % | Ave. Price (¥/m2) | Ave. Area (m2) | Data Source | |||
HGHT | Categorial variables, on which floor in the building is the unit located? | Base | 1 | 0.0% | 34,452 | 87 | Web scraping from Lianjia.com, converted to dummy variables with Python to dummies library | |
High | 17,084 | 42.5% | 55,092 | 79 | ||||
Low | 11,231 | 28.0% | 59,160 | 93 | ||||
Mid | 11,843 | 29.5% | 58,891 | 86 | ||||
LAYT | Categorial variables, the layout of the unit | Duplex | 1632 | 4.1% | 58,108 | 154 | ||
Flat | 38,527 | 95.9% | 57,317 | 82 | ||||
BTYPE | Categorial variables, the size and shape of the building | Bungalow | 5 | 0.0% | 76,376 | 114 | ||
Mix | 207 | 0.5% | 72,013 | 106 | ||||
Slab | 36,379 | 90.6% | 56,346 | 85 | ||||
Tower | 3568 | 8.9% | 66,706 | 88 | ||||
STH_NTH | Categorial variables, is the unit south-facing? | Else | 7993 | 19.9% | 56,110 | 94 | ||
South | 32,166 | 80.1% | 57,657 | 83 | ||||
STRC | Categorial variables, the structure of the building | Brick | 17,944 | 44.7% | 53,060 | 61 | ||
Other | 59 | 0.2% | 58,984 | 81 | ||||
Steel | 22,156 | 55.2% | 60,819 | 105 | ||||
DÉCOR | Categorical variable, the interior quality of the unit | Blank | 1903 | 4.7% | 47,779 | 84 | ||
Other | 2863 | 7.1% | 53,395 | 79 | ||||
Refined | 20,859 | 51.9% | 61,322 | 96 | ||||
Simple | 14,534 | 36.2% | 53,680 | 72 | ||||
ELEVTR | Categorical variable, is an elevator available? | No | 24,106 | 60.0% | 52,764 | 69 | ||
Yes | 16,053 | 40.0% | 64,235 | 110 | ||||
LOCATION ATTRIBUTES | ||||||||
Count | Mean | Std. Dev. | Min | Max | Data Source | |||
D2SCBD | Network distance to its district center | 40,159 | 4.77 | 3.04 | 0.02 | 16.29 | Computed in ArcGIS, with Shanghai (2018) shapefile | |
D2CBD | Network distance to the center (Bund) | 40,159 | 12.62 | 7.48 | 0.03 | 35.11 | ||
Values | Count | % | Ave. Price (¥/m2) | Ave. Area (m2) | ||||
RING_X | Categorical variable, within which ring road is the unit located? | Ring1 | 9290 | 23.1% | 81,151 | 88 | Web scraping from Lianjia.com, converted to dummy variables with Python to dummies library | |
Ring2 | 9835 | 24.5% | 63,057 | 79 | ||||
Ring3 | 8742 | 21.8% | 52,356 | 81 | ||||
Ring4 | 12,292 | 30.6% | 38,345 | 92 | ||||
CTY_XX | Categorical variable, in which district is the unit located? The letters XX after CTY_ stands for the district name | BS: Baoshan | 3390 | 8.4% | 44,159 | 81 | ||
CN: Changning | 2400 | 6.0% | 70,051 | 83 | ||||
FX: Fengxian | 992 | 2.5% | 24,524 | 95 | ||||
HK: Hongkou | 1513 | 3.8% | 66,210 | 80 | ||||
HP: Huangpu | 1267 | 3.2% | 92,725 | 103 | ||||
JA: Jin’an | 964 | 2.4% | 95,101 | 90 | ||||
JD: Jiading | 1662 | 4.1% | 37,527 | 87 | ||||
MH: Minhang | 4806 | 12.0% | 49,479 | 91 | ||||
PD: Pudong | 9389 | 23.4% | 57,590 | 87 | ||||
PT: Putuo | 2941 | 7.3% | 58,412 | 76 | ||||
QP: Qingpu | 678 | 1.7% | 30,976 | 94 | ||||
JS: Jinshan | 2201 | 5.5% | 36,432 | 100 | ||||
XH: Xuhui | 3060 | 7.6% | 74,879 | 79 | ||||
YP: Yangpu | 3091 | 7.7% | 62,677 | 72 | ||||
ZB: Zhabei | 1805 | 4.5% | 63,647 | 79 | ||||
NEIGHBORHOOD ATTRIBUTES | ||||||||
Count | Mean | Std. Dev. | Min | Max | Data Source | |||
DENSRV | Density of Living Service (thousand/km2) | 40,159 | 0.115 | 0.187 | 0 | 3.5 | from Dazhongdianping.com, density calculated in ArcGIS | |
DENWRK | Density of Office (thousand/km2) | 40,159 | 9.5 | 22.4 | 0 | 573.5 | ||
D2MTR | Distance to Metro (km) | 40,159 | 0.8 | 0.7 | 0.01 | 7.8 | location data scraped from GaodeMap.com, distances calculated in Python | |
A2MTR | Accessibility to Metro | 40,159 | 5.7 | 6.8 | 0 | 46.0 | ||
D2SCH | Distance to School (km) | 40,159 | 2.7 | 2.3 | 0.02 | 11.9 | ||
A2SCH | Accessibility to School | 40,159 | 7.0 | 7.0 | 0 | 29.0 | ||
SUBJECTIVE STREETSCAPE ATTRIBUTES | ||||||||
S1_GREEN | Subjectively perceived greenness | 40,159 | 0.8 | 0.0 | 0.4 | 0.9 | Predicted with ML models with physical feature view indices as independent variables extracted from Baidu SVIs | |
S2_WLKBL | Subjectively perceived walkability | 40,159 | 0.6 | 0.1 | 0.4 | 0.8 | ||
S3_SAFTY | Subjectively perceived safety | 40,159 | 0.7 | 0.1 | 0.3 | 1.0 | ||
S4_IMBLT | Subjectively perceived imageability | 40,159 | 0.7 | 0.1 | 0.3 | 0.9 | ||
S5_ENCLS | Subjectively perceived enclosure | 40,159 | 0.7 | 0.1 | 0.3 | 0.9 | ||
S6_CMPLX | Subjectively perceived complexity | 40,159 | 0.6 | 0.0 | 0.5 | 0.9 | ||
SUBJECTIVE STREETSCAPE ATTRIBUTES | ||||||||
O1_GREEN | Objectively derived greenness | 40,159 | 0.4 | 0.1 | 0.0 | 0.8 | Equation derived scores by recombining selected physical feature view indices | |
O2_WALKB | Objectively derived walkability | 40,159 | 0.6 | 0.1 | 0.2 | 0.7 | ||
O3_SAFTY | Objectively derived safety | 40,159 | 0.4 | 0.1 | 0.1 | 0.7 | ||
O4_IMBLT | Objectively derived imageability | 40,159 | 0.6 | 0.1 | 0.0 | 0.9 | ||
O5_ENCLS | Objectively derived enclosure | 40,159 | 0.6 | 0.0 | 0.1 | 0.7 | ||
O6_CMPLX | Objectively derived complexity | 40,159 | 0.3 | 0.1 | 0.0 | 0.6 |
Sort | Feature | Mean Value | Std. Dev. |
---|---|---|---|
1 | Sky | 39.68% | 17.11% |
2 | Tree | 21.75% | 17.66% |
3 | Road | 11.60% | 6.37% |
4 | Building | 11.52% | 13.83% |
5 | Plant | 2.15% | 3.86% |
6 | Wall | 2.06% | 5.37% |
7 | Sidewalk | 1.84% | 2.62% |
8 | Fence | 1.66% | 2.80% |
9 | Grass | 1.53% | 2.79% |
10 | Car | 1.52% | 2.58% |
11 | Earth | 1.11% | 2.84% |
12 | Ceiling | 0.61% | 5.09% |
13 | Railing | 0.35% | 1.31% |
14 | Bridge | 0.34% | 2.59% |
15 | Signboard | 0.26% | 0.88% |
16 | Water | 0.26% | 1.43% |
17 | Van | 0.09% | 0.67% |
18 | Person | 0.08% | 0.27% |
19 | Skyscraper | 0.08% | 0.78% |
20 | Streetlight | 0.06% | 0.16% |
21 | Column | 0.06% | 0.51% |
22 | Minibike | 0.05% | 0.29% |
23 | Bicycle | 0.04% | 0.26% |
24 | Awning | 0.02% | 0.30% |
25 | Ashcan | 0.01% | 0.09% |
26 | Windowpane | 0.01% | 0.32% |
27 | Mountain | 0.01% | 0.19% |
28 | Fountain | 0.00% | 0.14% |
29 | Pier | 0.00% | 0.08% |
30 | Chair | 0.00% | 0.04% |
31 | Booth | 0.00% | 0.05% |
32 | Sculpture | 0.00% | 0.04% |
33 | Bulletin board | 0.00% | 0.06% |
34 | Lamp | 0.00% | 0.00% |
35 | Sofa | 0.00% | 0.00% |
S1_Green | S2_Wlkbl | S3_Safty | S4_Imblt | S5_Encls | S6_Cmplx | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Model | R2 | MAE (std) | R2 | MAE (std) | R2 | MAE (std) | R2 | MAE (std) | R2 | MAE (std) | R2 | MAE (std) |
SVM | 0.39 | 1.46 | 0.51 | 1.35 | 0.41 | 1.25 | 0.24 | 1.79 | 0.48* | 1.51(0.6) | 0.49 * | 1.50(0.8) |
Random Forest | 0.41 | 1.43 | 0.46 | 1.36 | 0.47* | 1.19 (0.7) | 0.29 | 1.73 | 0.43 | 1.55 | 0.27 | 1.63 |
Decision Tree | 0.12 | 1.96 | 0.13 | 1.94 | 0.18 | 1.58 | 0.05 | 2.36 | 0.26 | 2.29 | 0.08 | 2.14 |
Gradient Boosting | 0.49 * | 1.39 (0.6) | 0.48 * | 1.33 (0.7) | 0.47 | 1.21 | 0.51 * | 1.62(1.0) | 0.41 | 1.52 | 0.14 | 2.01 |
S1_Green | S2_Wlkbl | S3_Safty | S4_Imblt | S5_Encls | S6_Cmplx | Sum Importance | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | Imp. Score | Sort | Imp. Score | Sort | Imp. Score | Sort | Imp. Score | Sort | Imp. Score | Sort | Imp. Score | Sort | Sum Score | Sort |
sky | 0.033 | 8 | 0.183 | 1 | 0.197 | 1 | 0.162 | 1 | 0.492 | 1 | 0.139 | 1 | 1.205 | 1 |
tree | 0.288 | 1 | 0.042 | 7 | 0.186 | 2 | 0.130 | 2 | 0.042 | 4 | 0.042 | 7 | 0.730 | 2 |
building | 0.133 | 2 | 0.102 | 3 | 0.108 | 3 | 0.053 | 5 | 0.098 | 2 | 0.099 | 2 | 0.594 | 3 |
car | 0.057 | 4 | 0.133 | 2 | 0.072 | 4 | 0.038 | 9 | 0.027 | 6 | 0.098 | 3 | 0.423 | 4 |
road | 0.072 | 3 | 0.037 | 8 | 0.059 | 5 | 0.049 | 6 | 0.046 | 3 | 0.038 | 12 | 0.301 | 5 |
wall | 0.032 | 9 | 0.030 | 10 | 0.041 | 7 | 0.066 | 4 | 0.021 | 9 | 0.054 | 4 | 0.244 | 6 |
plant | 0.056 | 5 | 0.050 | 4 | 0.024 | 12 | 0.031 | 10 | 0.033 | 5 | 0.042 | 9 | 0.236 | 7 |
grass | 0.044 | 7 | 0.029 | 11 | 0.015 | 13 | 0.073 | 3 | 0.022 | 8 | 0.044 | 6 | 0.228 | 8 |
fence | 0.021 | 13 | 0.050 | 5 | 0.033 | 9 | 0.041 | 7 | 0.015 | 12 | 0.042 | 8 | 0.202 | 9 |
earth | 0.048 | 6 | 0.048 | 6 | 0.024 | 11 | 0.031 | 11 | 0.017 | 10 | 0.027 | 13 | 0.196 | 10 |
person | 0.026 | 10 | 0.028 | 13 | 0.036 | 8 | 0.040 | 8 | 0.022 | 7 | 0.038 | 11 | 0.191 | 11 |
sidewalk | 0.025 | 12 | 0.026 | 15 | 0.050 | 6 | 0.029 | 14 | 0.016 | 11 | 0.042 | 10 | 0.188 | 12 |
signboard | 0.018 | 14 | 0.034 | 9 | 0.030 | 10 | 0.024 | 16 | 0.015 | 13 | 0.027 | 14 | 0.147 | 13 |
truck | 0.026 | 11 | 0.017 | 18 | 0.010 | 16 | 0.030 | 12 | 0.013 | 15 | 0.020 | 17 | 0.116 | 14 |
bicycle | 0.010 | 18 | 0.025 | 16 | 0.005 | 21 | 0.013 | 20 | 0.006 | 23 | 0.046 | 5 | 0.104 | 15 |
streetlight | 0.016 | 16 | 0.028 | 14 | 0.014 | 15 | 0.016 | 18 | 0.015 | 14 | 0.016 | 19 | 0.104 | 16 |
railing | 0.017 | 15 | 0.028 | 12 | 0.015 | 14 | 0.010 | 21 | 0.011 | 16 | 0.020 | 18 | 0.102 | 17 |
chair | 0.010 | 19 | 0.017 | 17 | 0.002 | 25 | 0.030 | 13 | 0.008 | 19 | 0.024 | 15 | 0.091 | 18 |
minibike | 0.005 | 22 | 0.010 | 21 | 0.005 | 22 | 0.024 | 15 | 0.009 | 18 | 0.021 | 16 | 0.073 | 19 |
mountain | 0.003 | 23 | 0.015 | 19 | 0.007 | 18 | 0.014 | 19 | 0.010 | 17 | 0.007 | 23 | 0.054 | 20 |
OLS Diagnosis | Structure Attributes | Location Attributes | Neighborhood Attributes | Subjective Streetscape Score | Objective Streetscape Score |
---|---|---|---|---|---|
Adjusted R2 | 0.188 | 0.678 | 0.556 | 0.322 | 0.068 |
Pro (F-statistic) | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** | 0.000 *** |
Durbin–Watson | 1.986 | 1.999 | 1.9835 | 1.998 | 2.003 |
Variable | Feature Importance | Model 1 (Base Model) | Model 2 (Base + Subjective Scores) | Model 3 (Base + Objective Scores) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef | std err | VIF | Coef | Std Err | VIF | Coef | Std Err | VIF | ||
Constant | / | −0.671 *** | 0.106 | / | −0.691 *** | 0.106 | / | −0.770 *** | 0.106 | / |
Structure Attributes | ||||||||||
FLAREA | 0.831 | −0.0002 *** | 0.000 | 5.4 | −0.0002 *** | 0.000 | 5.4 | −0.0002 *** | 0.000 | 5.4 |
BEDRM | 0.145 | −0.003 *** | 0.001 | 3 | −0.002 *** | 0.001 | 3 | −0.002 *** | 0.001 | 3 |
BATH | 7.596 | 0.023 *** | 0.001 | 3 | 0.023 *** | 0.001 | 3 | 0.023 *** | 0.001 | 3 |
CSTRYR | 0.831 | 0.003 *** | 0.000 | 2.3 | 0.003 *** | 0.000 | 2.3 | 0.003 *** | 0.000 | 2.3 |
ELEVTR | 0.831 | 0.039 *** | 0.001 | 3.5 | 0.040 *** | 0.001 | 3.6 | 0.039 *** | 0.001 | 3.6 |
HGHT | 0.831 | −0.015 *** | 0.001 | 1.2 | −0.015 *** | 0.001 | 1.2 | −0.015 *** | 0.001 | 1.2 |
TOWER_SLAB | 0.001 | −0.064 *** | 0.001 | 2 | −0.062 *** | 0.001 | 2 | −0.062 *** | 0.001 | 2 |
STH_NTH | 0.001 | 0.007 *** | 0.001 | 2.1 | 0.007 *** | 0.001 | 2.1 | 0.007 *** | 0.001 | 2.1 |
REFNDECOR | 0.534 | 0.023 *** | 0.001 | 4.4 | 0.023 *** | 0.001 | 4.7 | 0.023 *** | 0.001 | 4.5 |
Location Attributes | ||||||||||
CTY_FX | 2.017 | −0.167 *** | 0.002 | 2.1 | −0.164 *** | 0.002 | 2.1 | −0.172 *** | 0.002 | 2.1 |
CTY_HK | 2.136 | 0.018 *** | 0.002 | 1.1 | 0.030 *** | 0.002 | 1.1 | 0.023 *** | 0.002 | 1.1 |
CTY_HP | 2.017 | 0.057 *** | 0.002 | 1.3 | 0.069 *** | 0.002 | 1.3 | 0.069 *** | 0.002 | 1.3 |
CTY_JA | 2.017 | 0.065 *** | 0.003 | 1 | 0.073 *** | 0.003 | 1 | 0.075 *** | 0.003 | 1 |
CTY_JD | 2.017 | −0.060 *** | 0.002 | 1.1 | −0.059 *** | 0.002 | 1.1 | −0.059 *** | 0.002 | 1.1 |
CTY_JS | 2.017 | −0.170 *** | 0.004 | 1.3 | −0.137 *** | 0.004 | 1.3 | −0.168 *** | 0.004 | 1.4 |
CTY_PD | 2.017 | 0.027 *** | 0.001 | 1.6 | 0.022 *** | 0.001 | 1.7 | 0.027 *** | 0.001 | 1.7 |
CTY_PT | 1.407 | −0.021 *** | 0.002 | 1.3 | −0.014 *** | 0.002 | 1.3 | −0.013 *** | 0.002 | 1.3 |
CTY_QP | 0.831 | −0.050 *** | 0.003 | 1.2 | −0.057 *** | 0.003 | 1.3 | −0.057 *** | 0.003 | 1.3 |
CTY_SJ | 0.831 | −0.050 *** | 0.002 | 1.2 | −0.046 *** | 0.002 | 1.2 | −0.053 *** | 0.002 | 1.2 |
CTY_YP | 0.831 | 0.033 *** | 0.002 | 1.1 | 0.041 *** | 0.002 | 1.2 | 0.038 *** | 0.002 | 1.2 |
CTY_ZB | 0.831 | 0.022 *** | 0.002 | 1.9 | 0.024 *** | 0.002 | 2 | 0.029 *** | 0.002 | 1.9 |
LND2CTR | 0.534 | −0.109 *** | 0.001 | 1.3 | −0.108 *** | 0.001 | 1.4 | −0.108 *** | 0.001 | 1.4 |
Neighborhood Attributes | ||||||||||
LNDENWRK | 0.534 | 0.002 *** | 0.000 | 1.2 | 0.002 *** | 0.000 | 1.2 | 0.002 *** | 0.000 | 1.2 |
LNDENSRV | 0.534 | 0.003 *** | 0.000 | 1.3 | 0.001 *** | 0.000 | 1.4 | 0.002 *** | 0.000 | 1.3 |
LNA2MTR | 0.534 | 0.021 *** | 0.000 | 2.3 | 0.021 *** | 0.000 | 2.3 | 0.021 *** | 0.000 | 2.3 |
LNA2SCH | 0.534 | 0.053 *** | 0.001 | 1.4 | 0.051 *** | 0.001 | 1.4 | 0.052 *** | 0.001 | 1.4 |
Subjective Street Scores | ||||||||||
S1_GREEN | 0.534 | / | / | / | −0.327 *** | 0.015 | 2.5 | / | / | / |
S2_WALKB | 0.475 | / | / | / | −0.189 *** | 0.009 | 4.1 | / | / | / |
S4_SAFTY | 0.001 | / | / | / | 0.188 *** | 0.010 | 7.7 | / | / | / |
S4_IMGBL | 0.001 | / | / | / | 0.134 *** | 0.008 | 3.6 | / | / | / |
S5_ENCLS | 0.001 | / | / | / | −0.040 *** | 0.010 | 8.9 | / | / | / |
Objective Street Scores | ||||||||||
O1_GREEN | 0.534 | / | / | / | / | / | / | 0.034 *** | 0.006 | 4.8 |
O2_WALKB | 0.534 | / | / | / | / | / | / | −0.013 * | 0.007 | 1.4 |
O3_SAFTY | 0.534 | / | / | / | / | / | / | 0.053 *** | 0.005 | 1.2 |
O4_IMGBL | 0.534 | / | / | / | / | / | / | −0.074 *** | 0.008 | 4.8 |
O5_ENCLO | 0.534 | / | / | / | / | / | / | −0.030 *** | 0.011 | 1.6 |
Diagnosis | ||||||||||
Adj. R2 | 0.783 | 0.791 | 0.787 | |||||||
Prob (F-statistic) | 0 *** | 0 *** | 0 *** | |||||||
Durbin–Watson | 2.009 | 2.007 | 2.007 | |||||||
No. Observation | 40,159 | 40,159 | 40,159 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Qiu, W.; Li, W.; Liu, X.; Zhang, Z.; Li, X.; Luo, D. Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques. Remote Sens. 2022, 14, 891. https://doi.org/10.3390/rs14040891
Xu X, Qiu W, Li W, Liu X, Zhang Z, Li X, Luo D. Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques. Remote Sensing. 2022; 14(4):891. https://doi.org/10.3390/rs14040891
Chicago/Turabian StyleXu, Xiang, Waishan Qiu, Wenjing Li, Xun Liu, Ziye Zhang, Xiaojiang Li, and Dan Luo. 2022. "Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques" Remote Sensing 14, no. 4: 891. https://doi.org/10.3390/rs14040891
APA StyleXu, X., Qiu, W., Li, W., Liu, X., Zhang, Z., Li, X., & Luo, D. (2022). Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques. Remote Sensing, 14(4), 891. https://doi.org/10.3390/rs14040891