Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Index for Water Area Change Characteristics
2.3.2. Estimation of Ecological Water Area
2.3.3. Estimation of Ecological Water Demand
3. Results
3.1. Changes in Water Area in Taitema Lake before and after Ecological Water Conveyance
3.2. Ecological Water Area
3.3. Estimation of Ecological Water Demand
3.4. Lake Water Inflow from the Tarim River and the Cherchen River
4. Discussion
4.1. Ecological Significance of Ecological Water Demand
4.2. Comparison of Related Studies
4.3. Calculation of the Actual Inflow of Lake Water
4.4. Limitations and Constraints of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, X.M.; Li, W.H. Assessment of the groundwater threshold of desert riparian forest vegetation along the middle and lower reaches of the Tarim River, China. Hydrol. Process. 2010, 24, 178–186. [Google Scholar] [CrossRef]
- Hou, P.; Beeton, R.J.S.; Carter, R.W.; Dong, X.G.; Li, X. Response to environmental flows in the lower Tarim River, Xinjiang, China: Ground water. J. Environ. Manag. 2007, 83, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.X.; Chen, Y.N.; Li, W.H. Ecological water demand of natural vegetation in the lower Tarim River. J. Geogr. Sci. 2010, 20, 261–272. [Google Scholar] [CrossRef]
- Chen, Y.N.; Chen, Y.P.; Xu, C.C.; Ye, Z.X.; Li, Z.Q.; Zhu, C.G.; Ma, X.D. Effects of ecological water conveyance on groundwater dynamics and riparian vegetation in the lower reaches of Tarim River, China. Hydrol. Process. 2010, 24, 170–177. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Xu, C.C.; Ye, Z.X.; Chen, Y.P. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River basin. Environ. Earth. Sci. 2015, 73, 547–558. [Google Scholar] [CrossRef]
- Chen, Y.N.; Li, W.H.; Zhou, H.H.; Chen, Y.N.; Hao, X.M.; Fu, A.H.; Ma, J.X. Experimental study on water transport observations of desert riparian forests in the lower reaches of the Tarim River in China. Int. J. Biometeorol. 2017, 61, 1055–1062. [Google Scholar] [CrossRef]
- Hao, X.M.; Li, W.H. Impacts of ecological water conveyance on groundwater dynamics and vegetation recovery in the lower reaches of the Tarim River in northwest China. Environ. Monit. Assess. 2014, 186, 7605–7616. [Google Scholar] [CrossRef]
- Dou, X.; Ma, X.F.; Huo, T.C.; Zhu, J.T.; Zhao, C.Y. Assessment of the environmental effects of ecological water conveyance over 31 years for a terminal lake in Central Asia. Catena 2022, 208, 105725. [Google Scholar] [CrossRef]
- Ye, Z.X.; Chen, Y.N.; Li, W.H.; Yan, Y.; Wan, J.H. Groundwater fluctuations induced by ecological water conveyance in the lower Tarim River, Xinjiang, China. J. Arid Environ. 2009, 73, 726–732. [Google Scholar] [CrossRef]
- Liu, C.M.; Chen, Y.N.; Xu, Z.X. Eco-hydrology and sustainable development in the arid regions of China. Hydrol. Process. 2010, 24, 127–128. [Google Scholar] [CrossRef]
- Han, M.; Zhao, C.Y.; Feng, G.; Disse, M.; Shi, F.Z.; Li, J.Y. An eco-hydrological approach to predicting regional vegetation and groundwater response to ecological water conveyance in dryland riparian ecosystems. Quatern. Int. 2015, 380–381, 224–236. [Google Scholar] [CrossRef]
- Liao, S.M.; Xue, L.Q.; Dong, Z.C.; Zhu, B.L.; Zhang, K.; Wei, Q.; Fu, F.B.; Wei, G.H. Cumulative ecohydrological response to hydrological processes in arid basins. Ecol. Indic. 2020, 111, 106005. [Google Scholar] [CrossRef]
- Pan, Y.P.; Chen, Y.P.; Chen, Y.N.; Wang, R.Z.; Ren, Z.G. Impact of groundwater depth on leaf hydraulic properties and drought vulnerability of Populus euphratica in the Northwest of China. Trees 2016, 30, 2029–2039. [Google Scholar] [CrossRef]
- Zhou, Y.Y.; Chen, Y.N.; Zhu, C.G.; Chen, Y.P.; Chen, X.L. Pupulation structure characteristics of Populus euphratica in the lower reaches of Tarim River. J. Desert Res. 2018, 38, 315–323. (In Chinese) [Google Scholar]
- Rajput, V.D.; Chen, Y.N.; Ayup, M. Effects of high salinity on physiological and anatomical indices during the early stages of Populus euphratica growth. Russ. J. Plant Physiol. 2015, 62, 229–236. [Google Scholar] [CrossRef]
- Yang, Y.H.; Chen, Y.N.; Li, W.H.; Zhu, C.G. Effects of progressive soil water deficit on growth, and physiological and biochemical responses of Populus euphratica in arid area: A case study in China. Pak. J. Bot. 2015, 47, 2077–2084. [Google Scholar]
- Zhu, C.G.; Chen, Y.N.; Li, W.H.; Chen, X.L.; He, G.Z. Heliotropic leaf movement of Sophora alopecuroides L.: An efficient strategy to optimise photochemical performance. Photosynthetica 2015, 53, 231–240. [Google Scholar] [CrossRef]
- Ling, H.B.; Xu, H.L.; Guo, B.; Deng, X.Y.; Zhang, P.; Wang, X.Y. Regulating water disturbance for mitigating drought stress to conserve and restore a desert riparian forest ecosystem. J. Hydrol. 2019, 572, 659–670. [Google Scholar] [CrossRef]
- Ling, H.B.; Guo, B.; Yan, J.J.; Deng, X.Y.; Xu, H.L.; Zhang, G.P. Enhancing the positive effects of ecological water conservancy engineering on desert riparian forest growth in an arid basin. Ecol. Indic. 2020, 118, 106797. [Google Scholar] [CrossRef]
- Li, L.J.; Zhang, X.Q.; Chen, C.Q.; Shen, M.Y. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years. Arid Land Geogr. 2018, 41, 238–247. (In Chinese) [Google Scholar]
- Zhu, C.M.; Lj, J.L.; Shen, Z.F.; Shen, Q. Time series monitoring and comparative analysis on eco-environment change in the lower reaches of the Tarim River. J. Geo-Inf. Sci. 2019, 21, 437–444. (In Chinese) [Google Scholar]
- Huo, T.C.; Yan, W.; Ma, X.F. A study of the variation and driving factors of the water area of the terminal lake of inland river: A case study of Taitema Lake region. Remote Sens. Land Resour. 2020, 32, 149–156. (In Chinese) [Google Scholar]
- Wang, H.L.; Kasim, T. Exploration and analysis of ecological environment change of Taitema Lake before and after ecological water transfer. Ecol. Sci. 2020, 39, 93–100. (In Chinese) [Google Scholar]
- Wang, Y.M.; Zhang, Q.Q.; Xu, H.L.; Zhao, X.F.; Liu, X.H.; Li, J. Change of plant diversity in the Taitema Lake Area before and after implementing the ecological water conveyance. Arid Zone Res. 2019, 36, 1186–1193. (In Chinese) [Google Scholar]
- Chen, G.L. Relationship between the surface area of Taitema Lake and main supply water. Water Conserv. Sci. Technol. Econ. 2016, 22, 41–44. (In Chinese) [Google Scholar]
- Sun, F.; Wang, Y.; Chen, Y.N.; Li, Y.P.; Zhang, Q.F.; Qin, J.X.; Kayumba, P.M. Historic and simulated desert- Oasis ecotone changes in the arid Tarim River Basin, China. Remote Sens. 2021, 13, 647. [Google Scholar] [CrossRef]
- Gleick, P.H. Water in crisis: Path to sustainable water use. Ecol. Appl. 1996, 8, 571–579. [Google Scholar] [CrossRef]
- Gleick, P.H. The changing water paradigm: A look at twenty-first century water resource development. Water Int. 2000, 25, 127–138. [Google Scholar] [CrossRef]
- Yang, Z.F.; Cui, B.S.; Sun, T.; Chen, H.; Yang, W. Mechanism, Model and Configuration of Wetland Ecological Water Demand; Science Press: Beijing, China, 2012. (In Chinese) [Google Scholar]
- Yang, W.; Yang, Z.F.; Sun, T. A review of requirement quantity and allocation of ecological water for wetland. Wetl. Sci. 2008, 6, 531–535. (In Chinese) [Google Scholar]
- Cui, B.S.; Zhao, X.; Yang, Z.F. Eco-hydrology-based calculation of the minimum ecological water requirement for lakes. Acta Ecol. Sin. 2005, 25, 1788–1795. (In Chinese) [Google Scholar]
- Zhang, H.; Zhang, L.; Zhao, C.Y. Ecological water requirement estimation of the rump lake in an extreme arid region of East Juyanhai. Acta Ecol. Sin. 2014, 34, 2102–2108. (In Chinese) [Google Scholar]
- Ye, Z.X.; Yang, Y.H.; Zhou, H.H.; Guo, B. Ecological water rights of the Bosten Lake wetlands in Xinjiang, China. Wetlands 2020, 40, 2597–2607. [Google Scholar] [CrossRef]
- Zhu, W.B.; Yan, J.B.; Jia, S.F. Monitoring recent fluctuations of the southern Pool of Lake Chad using multiple remote sensing data: Implications for water balance analysis. Remote Sens. 2017, 9, 1032. [Google Scholar] [CrossRef] [Green Version]
- Che, X.H.; Feng, M.; Sun, Q.; Sexton, J.O.; Channan, S.; Liu, J.P. The decrease in lake numbers and areas in Central Asia investigated using a landsat-derived water dataset. Remote Sens. 2021, 13, 1032. [Google Scholar] [CrossRef]
- Li, P.L.; Hu, Z.M.; Liu, Y.W. Shift in the trend of browning in Southwestern Tibetan Plateau in the past two decades. Agric. For. Meteorol. 2020, 287, 107950. [Google Scholar] [CrossRef]
- Zhang, C.H.; Lv, A.F.; Zhu, W.B.; Yao, G.B.; Qi, S.S. Using multisource satellite data to investigate lake area, water level, and water storage changes of terminal lakes in ungauged regions. Remote Sens. 2021, 13, 3221. [Google Scholar] [CrossRef]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and ints long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Ziyinaii, H.; Wu, Z.P.; Baolangtijian, K. Lake changes in spatial evolution and driving force for the water area change of the Manas lake in Xinjiang in the past forty years. Remote Sens. Land Resour. 2018, 30, 217–223. (In Chinese) [Google Scholar]
- Ran, X.J.; Shen, L.; Li, X.H. Study on the rule of water demand of swamp reed in Bosten Lake. J. Water Resour. Water Eng. 2010, 21, 66–69. (In Chinese) [Google Scholar]
- Yuan, T.H.; Xi, L.; Song, Z.J. Engineering characteristics of the foundation soil of Eastern Pump Station at Bositeng Lake in Xinjiang. Rock Soil Mech. 2003, 24, 105–109. (In Chinese) [Google Scholar]
- Wang, J.X.; Li, M.Y.; Wang, L.M.; She, J.F.; Zhu, L.P.; Li, X.G. Long-term lake area change and its relationship with climate in the Endorheic basins of the Tibetan Plateau. Remote Sens. 2021, 13, 5125. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, Q.; Sapkota, L.; Luo, Y.Y.; Wang, H.; Liao, H.J. Rapid Glacier shrinkage and glacial lake expansion of a China-Nepal transboundary catchment in the Central Himalayas, between 1964 and 2020. Remote Sens. 2021, 13, 3614. [Google Scholar] [CrossRef]
- Abula, A.; Zhu, Q.Q.; Xu, H.L.; Zhao, X.F.; Li, J.; Wang, Y.J. Characteristics of vegetation variation in Taitema Lake. J. Xinjiang Univ. (Nat. Sci. Ed.) 2019, 36, 182–191. (In Chinese) [Google Scholar]
- Hu, S.; Mo, X.G.; Lin, Z.H. Projections of spatial-temporal variation of drought in north China. Arid Land Geogr. 2015, 38, 239–248. (In Chinese) [Google Scholar]
- Fan, Z.L.; Xu, H.L.; Fu, J.Y.; Kurban, A.; Ablekim, A. Study on protection of wetland of Taitema Lake. Quat. Sci. 2013, 33, 594–602. (In Chinese) [Google Scholar]
- Ye, Z.X.; Chen, Y.N.; Li, W.H.; Balati, M.; Mao, X.H. Study on the minimum ecological discharge of the cut-off channel in the lower reaches of Tarim River. Prog. Nat. Sci. 2008, 18, 531–537. (In Chinese) [Google Scholar]
Period | SΔ/km2 | R/% | Rs/%/Year |
---|---|---|---|
2000–2007 | 11 | 169 | 24 |
2007–2009 | −10 | −61 | −30 |
2009–2020 | 69 | 936 | 85 |
2000–2020 | 183 | 2884 | 144 |
Month | May | June | July | August | September | Total |
---|---|---|---|---|---|---|
Vegetation evaporation/mm | 241.1 | 344 | 355.3 | 318 | 175.8 | 1434.2 |
Vegetation evaporation in dry flow years/108 m3 | 0.19 | 0.27 | 0.28 | 0.25 | 0.14 | 1.13 |
Vegetation evaporation in normal flow years/108 m3 | 0.36 | 0.51 | 0.53 | 0.47 | 0.26 | 2.14 |
Vegetation evaporation in high flow years/108 m3 | 0.65 | 0.92 | 0.95 | 0.85 | 0.47 | 3.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Z.; Chen, S.; Zhang, Q.; Liu, Y.; Zhou, H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. https://doi.org/10.3390/rs14040832
Ye Z, Chen S, Zhang Q, Liu Y, Zhou H. Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sensing. 2022; 14(4):832. https://doi.org/10.3390/rs14040832
Chicago/Turabian StyleYe, Zhaoxia, Shifeng Chen, Qifei Zhang, Yongchang Liu, and Honghua Zhou. 2022. "Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River" Remote Sensing 14, no. 4: 832. https://doi.org/10.3390/rs14040832
APA StyleYe, Z., Chen, S., Zhang, Q., Liu, Y., & Zhou, H. (2022). Ecological Water Demand of Taitema Lake in the Lower Reaches of the Tarim River and the Cherchen River. Remote Sensing, 14(4), 832. https://doi.org/10.3390/rs14040832