Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. UAV-Based Microbolometer (Zenmuse XT2)
- Flight Plans and Image Processing
2.3. Statistical Analyses
3. Results
3.1. Weather Conditions
3.2. TIR Images from Sensors with High and Low Surface Absorptivity
- Sensor Accuracy and Precision Comparison
4. Discussion
4.1. The Link between Sensor Surface Absorptivity and Thermal Drift
4.2. Role of Light Conditions and Air Temperature on Thermal Drift
4.3. Relative and Absolute Temperature—Different Tools for Different Questions
4.4. Limitations
5. Conclusions
- The exterior absorptivity of the sensor plays a large role in its internal thermal conductance, and an increase in the thermal conductance leads to greater thermal drift. To mitigate this source of thermal drift the sensor should be shielded from solar irradiance using a low absorptivity material, such as polished aluminum tape. This issue could also be remedied by the manufacturer by using a low absorptivity sensor finish. This simple modification also increases the sensor sensitivity; for example, the shielded sensor in this study depicted ripples on the surface of the water, whereas the unshielded sensor did not.
- The accuracy of uncooled TIR sensor measurements depends on light intensity. As TIR sensors are passive, if the goal of data collection is to accurately quantify the temperature of the environment, flights should be flown when the light intensity is >120,000 lux. However, there is a balance between light intensity and air temperature. High light intensity is often associated with high air temperatures, especially during summer. As such, the ideal time for accurate uncooled TIR mapping may be clear-sky conditions with low air temperatures.
- When processing TIR images of waterbodies, it is typical practice to apply the emissivity value of water during image processing. However, our results suggest that changes in emissivity due to river-bed colour, and the associated attenuation of light through the water column, should also be considered. Future work is required to develop more sophisticated methods to delineate the spatial variability of emissivity. These data could then be incorporated into the image processing step, and thereby increase the method accuracy. Additionally, temperature loggers could also be placed in areas with different river-bed colour characteristics. Such practices would aid in developing more accurate calibrated TIR data.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dugdale, S.J.; Klaus, J.; Hannah, D.M. Looking to the Skies: Realising the Combined Potential of Drones and Thermal Infrared Imagery to Advance Hydrological Process Understanding in Headwaters. Water Resour. Res. 2022, 58, e2021WR031168. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, H.; Hyun, S.P.; Burnett, W.C.; Koh, D.C.; Ha, K.; Kim, D.J.; Kim, Y.; Kang, K.M. Unmanned aerial vehicles (UAVs)-based thermal infrared (TIR) mapping, a novel approach to assess groundwater discharge into the coastal zone. Limnol. Oceanogr. Methods 2016, 14, 725–735. [Google Scholar] [CrossRef]
- Bertalan, L.; Holb, I.; Pataki, A.; Szabó, G.; Kupásné Szalóki, A.; Szabó, S. UAV-based multispectral and thermal cameras to predict soil water content—A machine learning approach. Comput. Electron. Agric. 2022, 200, 107262. [Google Scholar] [CrossRef]
- Vollmer, M.; Möllmann, K.P. Infrared Thermal Imaging: Fundamentals, Research and Applications. In Infrared Thermal Imaging: Fundamentals, Research and Applications; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2010. [Google Scholar] [CrossRef]
- Scambos, T.A.; Campbell, G.G.; Pope, A.; Haran, T.; Muto, A.; Lazzara, M.; Reijmer, C.H.; van den Broeke, M.R. Ultralow Surface Temperatures in East Antarctica from Satellite Thermal Infrared Mapping: The Coldest Places on Earth. Geophys. Res. Lett. 2018, 45, 6124–6133. [Google Scholar] [CrossRef] [Green Version]
- Handcock, R.N.; Gillespie, A.R.; Cherkauer, K.A.; Kay, J.E.; Burges, S.J.; Kampf, S.K. Accuracy and uncertainty of thermal-infrared remote sensing of stream temperatures at multiple spatial scales. Remote Sens. Environ. 2006, 100, 427–440. [Google Scholar] [CrossRef]
- Handcock, R.N.; Torgersen, C.E.; Cherkauer, K.A.; Gillespie, A.R.; Tockner, K.; Faux, R.N.; Tan, J. Thermal Infrared Remote Sensing of Water Temperature in Riverine Landscapes. In Fluvial Remote Sensing for Science and Management; Wiley: Hoboken, NJ, USA, 2012; pp. 85–113. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Price, D.M.; Li, H.W.; McIntosh, B.A. Multiscale thermal refugia and stream habitat associations of chinook salmon in northeastern Oregon. Ecol. Appl. 1999, 9, 301–319. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A. Temporal variability of thermal refuges and water temperature patterns in an Atlantic salmon river. Remote Sens. Environ. 2013, 136, 358–373. [Google Scholar] [CrossRef]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Faux, R.N.; Steel, E.A.; Beechie, T.J.; Ebersole, J.L.; Leibowitz, S.G. Rethinking the longitudinal stream temperature paradigm: Region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures. Hydrol. Process. 2015, 29, 4719–4737. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Devito, K.J.; Ogilvie, J.; Linnansaari, T.; Pronk, T.; Allard, S.; Curry, R.A. Effects of topographic resolution and geologic setting on spatial statistical river temperature models. Water Resour. Res. 2020, 56, e2020WR028122. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Pander, J.; Ryu, D.; Stewardson, M.J.; Geist, J. Unmanned Aerial Vehicle (UAV)-Based Thermal Infra-Red (TIR) and Optical Imagery Reveals Multi-Spatial Scale Controls of Cold-Water Areas Over a Groundwater-Dominated Riverscape. Front. Environ. Sci. 2020, 8, 64. [Google Scholar] [CrossRef]
- KarisAllen, J.J.; Kurylyk, B.L. Drone-based characterization of intertidal spring cold-water plume dynamics. Hydrol. Process. 2021, 35, e14258. [Google Scholar] [CrossRef]
- Briggs, M.A.; Hare, D.K. Explicit consideration of preferential groundwater discharges as surface water ecosystem control points. Hydrol. Process. 2018, 32, 2435–2440. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Linnansaari, T.; Leavitt, J.; Samways, K.M.; Kurylyk, B.L.; Curry, R.A. The salmon-peloton: Hydraulic habitat shifts of adult Atlantic salmon (Salmo salar) due to behavioural thermoregulation. River Res. Appl. 2021, 38, 107–118. [Google Scholar] [CrossRef]
- Still, C.; Powell, R.; Aubrecht, D.; Kim, Y.; Helliker, B.; Roberts, D.; Richardson, A.D.; Goulden, M.; Still, C.; Powell, R.; et al. Thermal imaging in plant and ecosystem ecology: Applications and challenges. Ecosphere 2019, 10, e02768. [Google Scholar] [CrossRef] [Green Version]
- Goddijn-murphy, L.; Williamson, B.J.; McIlvenny, J.; Corradi, P. Using a UAV Thermal Infrared Camera for Monitoring Floating Marine Plastic Litter. Remote Sens. 2022, 14, 3179. [Google Scholar] [CrossRef]
- Mokhtari, A.; Ahmadi, A.; Daccache, A.; Drechsler, K.; Fritz, S.; Hu, Q.; Jin, Z.; Wu, W.; You, L. Actual Evapotranspiration from UAV Images: A Multi-Sensor Data Fusion Approach. Remote Sens. 2021, 13, 2315. [Google Scholar] [CrossRef]
- Torgersen, C.E.; Faux, R.N.; McIntosh, B.A. Aerial Survey of the upper McKenzie River; Oregon State University: Corvallis, OR, USA, 1999. [Google Scholar]
- Torgersen, C.E.; Faux, R.N.; McIntosh, B.A.; Poage, N.J.; Norton, D.J. Airborne thermal remote sensing for water temperature assessment in rivers and streams. Remote Sens. Environ. 2001, 76, 386–398. [Google Scholar] [CrossRef]
- Monk, W.A.; Wilbur, N.M.; Curry, R.A.; Gagnon, R.; Faux, R.N. Linking landscape variables to cold water refugia in rivers. J. Environ. Manage. 2013, 118, 170–176. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Bergeron, N.E.; St-Hilaire, A. Spatial distribution of thermal refuges analysed in relation to riverscape hydromorphology using airborne thermal infrared imagery. Remote Sens. Environ. 2015, 160, 43–55. [Google Scholar] [CrossRef]
- Wawrzyniak, V.; Piégay, H.; Allemand, P.; Vaudor, L.; Goma, R.; Grandjean, P. Effects of geomorphology and groundwater level on the spatio-temporal variability of riverine cold water patches assessed using thermal infrared (TIR) remote sensing. Remote Sens. Environ. 2016, 175, 337–348. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Devito, K.J.; Curry, R.A. The influence of landscape characteristics on the spatial variability of river temperatures. CATENA 2019, 177, 70–83. [Google Scholar] [CrossRef]
- KarisAllen, J.J.; Mohammed, A.A.; Tamborski, J.J.; Jamieson, R.C.; Danielescu, S.; Kurylyk, B.L. Present and future thermal regimes of intertidal groundwater springs in a threatened coastal ecosystem. Hydrol. Earth Syst. Sci. 2022, 26, 4721–4740. [Google Scholar] [CrossRef]
- Frechette, D.M.; Dugdale, S.J.; Dodson, J.J.; Bergeron, N.E. Understanding summertime thermal refuge use by adult Atlantic salmon using remote sensing, river temperature monitoring, and acoustic telemetry. Can. J. Fish. Aquat. Sci. 2018, 75, 1999–2010. [Google Scholar] [CrossRef] [Green Version]
- Wilbur, N.M.; O’Sullivan, A.M.; MacQuarrie, K.T.B.; Linnansaari, T.; Curry, R.A. Characterizing physical habitat preferences and thermal refuge occupancy of brook trout (Salvelinus fontinalis) and Atlantic salmon (Salmo salar) at high river temperatures. River Res. Appl. 2020, 36, 769–783. [Google Scholar] [CrossRef]
- Mejia, F.H.; Torgersen, C.E.; Berntsen, E.K.; Maroney, J.R.; Connor, J.M.; Fullerton, A.H.; Ebersole, J.L.; Lorang, M.S. Longitudinal, Lateral, Vertical, and Temporal Thermal Heterogeneity in a Large Impounded River: Implications for Cold-Water Refuges. Remote Sens. 2020, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Fuller, M.R.; Ebersole, J.L.; Detenbeck, N.E.; Labiosa, R.; Leinenbach, P.; Torgersen, C.E. Integrating thermal infrared stream temperature imagery and spatial stream network models to understand natural spatial thermal variability in streams. J. Therm. Biol. 2021, 100, 103028. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.M.; O’Sullivan, A.M. Cooler, bigger; warmer, smaller: Fine-scale thermal heterogeneity maps age class and species distribution in behaviourally thermoregulating salmonids. River Res. Appl. 2022. [Google Scholar] [CrossRef]
- O’Sullivan, A.M.; Linnansaari, T.; Curry, R.A. Ice Cover Exists (ICE): A quick method to delineate groundwater inputs in running waters for cold and temperate regions. Hydrol. Process. 2019, 33, hyp.13557. [Google Scholar] [CrossRef]
- Wawrzyniak, V.; Piégay, H.; Allemand, P.; Vaudor, L.; Grandjean, P. Prediction of water temperature heterogeneity of braided rivers using very high resolution thermal infrared (TIR) images. Int. J. Remote Sens. 2013, 34, 4812–4831. [Google Scholar] [CrossRef]
- Dugdale, S.J.; Kelleher, C.A.; Malcolm, I.A.; Caldwell, S.; Hannah, D.M. Assessing the potential of drone-based thermal infrared imagery for quantifying river temperature heterogeneity. Hydrol. Process. 2019, 33, 1152–1163. [Google Scholar] [CrossRef]
- Kraaijenbrink, P.D.A.; Shea, J.M.; Litt, M.; Steiner, J.F.; Treichler, D.; Koch, I.; Immerzeel, W.W. Mapping surface temperatures on a debris-covered glacier with an unmanned aerial vehicle. Front. Earth Sci. 2018, 6, 64. [Google Scholar] [CrossRef] [Green Version]
- Mesas-Carrascosa, F.J.; Pérez-Porras, F.; de Larriva, J.E.M.; Frau, C.M.; Agüera-Vega, F.; Carvajal-Ramírez, F.; Martínez-Carricondo, P.; García-Ferrer, A. Drift Correction of Lightweight Microbolometer Thermal Sensors On-Board Unmanned Aerial Vehicles. Remote Sens. 2018, 10, 615. [Google Scholar] [CrossRef] [Green Version]
- Abolt, C.; Caldwell, T.; Wolaver, B.; Pai, H. Unmanned aerial vehicle-based monitoring of groundwater inputs to surface waters using an economical thermal infrared camera. Opt. Eng. 2018, 57, 053113. [Google Scholar] [CrossRef]
- Kelly, J.; Kljun, N.; Olsson, P.O.; Mihai, L.; Liljeblad, B.; Weslien, P.; Klemedtsson, L.; Eklundh, L. Challenges and Best Practices for Deriving Temperature Data from an Uncalibrated UAV Thermal Infrared Camera. Remote Sens. 2019, 11, 567. [Google Scholar] [CrossRef] [Green Version]
- Ostrower, D. Optical Thermal Imaging—Replacing microbolometer technology and achieving universal deployment. III-Vs Rev. 2006, 19, 24–27. [Google Scholar] [CrossRef] [Green Version]
- Ravindra, N.M. Microbolometers: Fundamentals, Materials, and Recent Developments; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 9780081028124. [Google Scholar]
- Olbrycht, R.; Wiecek, B.; De Mey, G. Thermal drift compensation method for microbolometer thermal cameras. Appl. Opt. 2012, 51, 1788–1794. [Google Scholar] [CrossRef]
- Briggs, M.A.; Dawson, C.B.; Holmquist-Johnson, C.L.; Williams, K.H.; Lane, J.W. Efficient hydrogeological characterization of remote stream corridors using drones. Hydrol. Process. 2019, 33, 316–319. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, S.H.; Kelleher, C.; Baker, E.A.; Lautz, L.K. Relative information from thermal infrared imagery via unoccupied aerial vehicle informs simulations and spatially-distributed assessments of stream temperature. Sci. Total Environ. 2019, 661, 364–374. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a Ground Water Tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef]
- Ribeiro-Gomes, K.; Hernández-López, D.; Ortega, J.F.; Ballesteros, R.; Poblete, T.; Moreno, M.A. Uncooled Thermal Camera Calibration and Optimization of the Photogrammetry Process for UAV Applications in Agriculture. Sensors 2017, 17, 2173. [Google Scholar] [CrossRef] [PubMed]
- Furze, S.; O’Sullivan, A.M.; Allard, S.; Pronk, T.; Curry, R.A. A High-Resolution, Random Forest Approach to Mapping Depth-to-Bedrock across Shallow Overburden and Post-Glacial Terrain. Remote Sens. 2021, 13, 4210. [Google Scholar] [CrossRef]
- Rampton, V.N.; Gauthier, R.C.; Thibault, J.; Seaman, A.A. Quaternary Geology of New Brunswick; Geological Survey of Canada: Ottawa, ON, Canada, 1984; p. 5921. ISBN 066011. [Google Scholar]
- Touloukian, Y.S.; Buyco, E.H. Thermophysical Properties of Matter—The TPRC Data Series. Volume 4. Specific Heat—Metallic Elements and Alloys; Thermophysical and Electronic Properties Information Analysis Center: Lafayette, IN, USA, 1971. [Google Scholar]
- Wan, Q.; Brede, B.; Smigaj, M.; Kooistra, L. Factors Influencing Temperature Measurements from Miniaturized Thermal Infrared (TIR) Cameras: A Laboratory-Based Approach. Sensors 2021, 21, 8466. [Google Scholar] [CrossRef] [PubMed]
- Maguire, M.S.; Neale, C.M.U.; Woldt, W.E. Improving Accuracy of Unmanned Aerial System Thermal Infrared Remote Sensing for Use in Energy Balance Models in Agriculture Applications. Remote Sens. 2021, 13, 1635. [Google Scholar] [CrossRef]
- Sullivan, C.J.; Vokoun, J.C.; Helton, A.M.; Briggs, M.A.; Kurylyk, B.L. An ecohydrological typology for thermal refuges in streams and rivers. Ecohydrology 2021, 14, e2295. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Briggs, M.A.; Delin, G.; Hare, D.K. Combined use of thermal methods and seepage meters to efficiently locate, quantify, and monitor focused groundwater discharge to a sand-bed stream. Water Resour. Res. 2016, 52, 4486–4503. [Google Scholar] [CrossRef] [Green Version]
- Hare, D.K.; Briggs, M.A.; Rosenberry, D.O.; Boutt, D.F.; Lane, J.W. A comparison of thermal infrared to fiber-optic distributed temperature sensing for evaluation of groundwater discharge to surface water. J. Hydrol. 2015, 530, 153–166. [Google Scholar] [CrossRef] [Green Version]
- Aragon, B.; Johansen, K.; Parkes, S.; Malbeteau, Y.; Al-mashharawi, S.; Al-amoudi, T.; Andrade, C.F.; Turner, D.; Lucieer, A.; McCabe, M.F. A Calibration Procedure for Field and UAV-Based Uncooled Thermal Infrared Instruments. Sensors 2020, 20, 3316. [Google Scholar] [CrossRef]
- Virtue, J.; Turner, D.; Williams, G.; Zeliadt, S.; McCabe, M.; Lucieer, A. Thermal Sensor Calibration for Unmanned Aerial Systems Using an External Heated Shutter. Drones 2021, 5, 119. [Google Scholar] [CrossRef]
Flight # | Sensor | Date | Time | Flight Duration (mm:ss) |
---|---|---|---|---|
1 | Ds | 27 June 2022 | 12:20 | 7:32 |
2 | Rs | 27 June 2022 | 12:30 | 7:32 |
3 | Ds | 27 June 2022 | 13:10 | 7:32 |
4 | Rs | 27 June 2022 | 13:30 | 7:32 |
5 | Ds | 27 June 2022 | 14:10 | 7:32 |
6 | Rs | 27 June 2022 | 14:30 | 7:32 |
7 | Ds | 29 June 2020 | 10:01 | 7:32 |
8 | Rs | 29 June 2020 | 10:16 | 7:32 |
9 | Ds | 29 June 2020 | 11:02 | 7:40 |
10 | Rs | 29 June 2020 | 11:15 | 7:00 |
11 | Ds | 29 June 2020 | 12:01 | 7:38 |
12 | Rs | 29 June 2020 | 12:16 | 7:40 |
13 | Ds | 29 June 2020 | 13:01 | 7:38 |
14 | Rs | 29 June 2020 | 13:16 | 7:40 |
15 | Ds | 29 June 2020 | 14:10 | 7:32 |
16 | Rs | 29 June 2020 | 14:30 | 6:10 * |
17 | Ds | 30 June 2022 | 14:25 | 7:38 |
18 | Rs | 30 June 2022 | 14:43 | 7:40 |
19 | Ds | 30 June 2022 | 16:25 | 7:38 |
20 | Rs | 30 June 2022 | 16:44 | 7:38 |
21 | Ds | 30 June 2022 | 18:19 | 7:38 |
22 | Rs | 30 June 2022 | 18:33 | 7:40 |
Flight # | Sensor | Date | Time | Ta (°C) | Light (lux) | Avg. Dev. (°C) | Avg. Dev. Range (°C) |
---|---|---|---|---|---|---|---|
1 | Ds | 27 June 2022 | 12:20 | 23.4 | 9300 | −5.1 | −1.4 |
2 | Rs | 27 June 2022 | 12:30 | 23.8 | 10,333 | −1.1 | −3.1 |
3 | Ds | 27 June 2022 | 13:10 | 24.5 | 7578 | −5.6 | −0.9 |
4 | Rs | 27 June 2022 | 13:30 | 24.5 | 4478 | −4.0 | −1.4 |
5 | Ds | 27 June 2022 | 14:10 | 25.7 | 11,711 | −4.9 | −2.1 |
6 | Rs | 27 June 2022 | 14:30 | 25.3 | 2411 | −3.3 | −1.2 |
7 | Ds | 29 June 2022 | 10:01 | 16.0 | 104,712 | −2.7 | −3.0 |
8 | Rs | 29 June 2022 | 10:16 | 16.7 | 121,245 | −0.1 | −2.6 |
9 | Ds | 29 June 2022 | 11:02 | 19.9 | 154,312 | −4.1 | −1.6 |
10 | Rs | 29 June 2022 | 11:15 | 20.3 | 165,334 | −0.5 | −2.6 |
11 | Ds | 29 June 2022 | 12:01 | 21.5 | 176,357 | −3.5 | −1.0 |
12 | Rs | 29 June 2022 | 12:16 | 21.6 | 198,401 | −2.9 | −1.5 |
13 | Ds | 29 June 2022 | 13:01 | 22.2 | 209,424 | −3.3 | −1.7 |
14 | Rs | 29 June 2022 | 13:16 | 22.3 | 220,446 | −1.8 | −1.1 |
15 | Ds | 29 June 2022 | 14:10 | 23.8 | 220,446 | −2.7 | −1.6 |
16 | Rs | 29 June 2022 | 14:30 | 24.1 | 220,446 | −1.7 | −1.1 |
17 | Ds | 30 June 2022 | 14:25 | 22.6 | 264,535 | −3.5 | −2.2 |
18 | Rs | 30 June 2022 | 14:43 | 22.5 | 253,513 | −2.9 | −2.4 |
19 | Ds | 30 June 2022 | 16:25 | 21.4 | 26,178 | −6.3 | −1.5 |
20 | Rs | 30 June 2022 | 16:44 | 21.4 | 31,689 | −4.6 | −1.7 |
21 | Ds | 30 June 2022 | 18:19 | 20.5 | 33,067 | −5.3 | −2.0 |
22 | Rs | 30 June 2022 | 18:33 | 22.5 | 22,045 | −2.9 | −2.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
O’Sullivan, A.M.; Kurylyk, B.L. Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy. Remote Sens. 2022, 14, 6356. https://doi.org/10.3390/rs14246356
O’Sullivan AM, Kurylyk BL. Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy. Remote Sensing. 2022; 14(24):6356. https://doi.org/10.3390/rs14246356
Chicago/Turabian StyleO’Sullivan, Antóin M., and Barret L. Kurylyk. 2022. "Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy" Remote Sensing 14, no. 24: 6356. https://doi.org/10.3390/rs14246356
APA StyleO’Sullivan, A. M., & Kurylyk, B. L. (2022). Limiting External Absorptivity of UAV-Based Uncooled Thermal Infrared Sensors Increases Water Temperature Measurement Accuracy. Remote Sensing, 14(24), 6356. https://doi.org/10.3390/rs14246356