Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams
Abstract
1. Introduction
2. Model and Observation Description
3. Results
3.1. Observation and Simulation of 17–18 March 2015 Superstorm
3.2. Physical Mechanisms of SAPS-Induced Ion Upflow
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mayr, H.G.; Volland, H. Magnetic storm characteristics of the thermosphere. J. Geophys. Res. 1973, 78, 2251–2264. [Google Scholar] [CrossRef]
- Cai, X.G.; Burns, A.G.; Wang, W.B.; Qian, L.Y.; Solomon, S.C.; Eastes, R.W.; McClintock, W.E.; Laskar, F.I. Investigation of a neutral “tongue” observed by GOLD during the geomagnetic storm on May 11, 2019. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028817. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Yue, X.N.; Wang, W.B.; Lei, J.H.; Burns, A.; Zhang, Y.L.; Wan, W.X.; Liu, L.B.; Hu, L.H.; Zhao, B.Q.; Schreiner, W.S. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 9234–9249. [Google Scholar] [CrossRef]
- Rajesh, P.K.; Lin, C.H.; Lin, C.Y.; Chen, C.H.; Liu, J.Y.; Matsuo, T.; Chen, S.P.; Yeh, W.H.; Huang, C.Y. Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by FORMOSAT-7/COSMIC-2 and GNSS observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028261. [Google Scholar] [CrossRef]
- Foster, J.C.; Coster, A.J.; Erickson, P.J.; Holt, J.M.; Lind, F.D.; Rideout, W.; McCready, M.; van Eyken, A.; Barnes, R.J.; Greenwald, R.A.; et al. Multiradar observations of the polar tongue of ionization. J. Geophys. Res. Space Phys. 2005, 110, A09S31. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.B.; Burns, A.; Yue, X.A.; Zhang, S.R.; Zhang, Y.L.; Huang, C.S. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Galperin, Y.; Ponomarev, V.N.; Zosimova, A.G. Plasma convection in the polar ionosphere. Ann. Geophys. 1974, 30, 1–7. [Google Scholar]
- Spiro, R.W.; Heelis, R.H.; Hanson, W.B. Rapid sub-auroral ion drifts observed by Atmospheric Explorer C. Geophys. Res. Lett. 1979, 6, 657–660. [Google Scholar] [CrossRef]
- Foster, J.C.; Vo, H.B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. Space Phys. 2002, 107, 1475. [Google Scholar] [CrossRef]
- Kunduri, B.S.R.; Baker, J.B.H.; Ruohoniemi, J.M.; Coster, A.J.; Vines, S.K.; Anderson, B.J.; Shepherd, S.G.; Chartier, A.T. An Examination of Magnetosphere-Ionosphere Influences During a SAPS Event. Geophys. Res. Lett. 2021, 48, e2021GL095751. [Google Scholar] [CrossRef]
- Southwood, D.J.; Wolf, R.A. An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res. Space Phys. 1978, 83, 5227–5232. [Google Scholar] [CrossRef]
- Anderson, P.C.; Hanson, W.B.; Heelis, R.A.; Craven, J.D.; Baker, D.N.; Frank, L.A. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. Space Phys. 1993, 98, 6069–6078. [Google Scholar] [CrossRef]
- Schunk, R.W.; Raitt, W.J.; Banks, P.M. Effect of Electric-Fields on Daytime High Latitude E and F Regions. J. Geophys. Res. Space Phys. 1975, 80, 3121–3130. [Google Scholar] [CrossRef]
- Wolf, R.A.; Spiro, R.W.; Sazykin, S.; Toffoletto, F.R. How the Earth’s inner magnetosphere works: An evolving picture. J. Geophys. Res. Space Phys. 2007, 69, 288–302. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Zhang, Y.L.; Wang, W.B.; Huang, C.S.; Coster, A.J.; Holt, J.M.; Foster, J.F.; Sulzer, M.; Kerr, R. Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2017, 122, 1314–1337. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ridley, A.; Huang, T. The spatial distribution of region 2 field-aligned currents relative to subauroral polarization stream. Ann. Geophys. 2014, 32, 533–542. [Google Scholar] [CrossRef]
- Liu, J.; Wang, W.B.; Qian, L.Y.; Lotko, W.; Burns, A.G.; Pharr, K.; Lug, G.; Solomon, S.C.; Liu, L.B.; Wan, W.X.; et al. Solar flare effects in the Earth’s magnetosphere. Nat. Phys. 2021, 17, 807. [Google Scholar] [CrossRef]
- Goldstein, J.; Burch, J.L.; Sandel, B.R.; Mende, S.B.; Brandt, P.C.S.; Hairston, M.R. Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J. Geophys. Res. Space Phys. 2015, 110, A03205. [Google Scholar] [CrossRef]
- He, F.; Zhang, X.X.; Wang, W.B.; Liu, L.B.; Ren, Z.P.; Yue, X.A.; Hu, L.H.; Wan, W.X.; Wang, H. Large-Scale Structure of Subauroral Polarization Streams During the Main Phase of a Severe Geomagnetic Storm. J. Geophys. Res. Space Phys. 2018, 123, 2964–2973. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Investigating Magnetosphere-Ionosphere-Thermosphere (M-I-T) Coupling Occurring During the 7-8 November 2004 Superstorm. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027484. [Google Scholar] [CrossRef]
- Wang, W.B.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.Y.; Lei, J.H.; Xu, J.Y. Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. Space Phys. 2012, 117, A07301. [Google Scholar] [CrossRef]
- Zou, S.; Lyons, L.R.; Wang, C.P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. Space Phys. 2009, 114, A01205. [Google Scholar] [CrossRef]
- Raeder, J.; Cramer, W.D.; Jensen, J.; Fuller-Rowell, T.; Maruyama, N.; Toffoletto, F.; Vo, H. Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. J. Phys. Conf. Ser. 2016, 767, 012021. [Google Scholar] [CrossRef]
- Lin, D.; Wang, W.B.; Scales, W.A.; Pham, K.; Liu, J.; Zhang, B.Z.; Merkin, V.; Shi, X.L.; Kunduri, B.; Maimaiti, M. SAPS in the 17 March 2013 Storm Event: Initial Results From the Coupled Magnetosphere-Ionosphere-Thermosphere Model. J. Geophys. Res. Space Phys. 2019, 124, 6212–6225. [Google Scholar] [CrossRef]
- Wei, D.; Yu, Y.Q.; Ridley, A.J.; Cao, J.B. Multi-point observations and modeling of subauroral polarization streams (SAPS) and double-peak subauroral ion drifts (DSAIDs): A case study. Adv. Space Res. 2019, 63, 3522–3535. [Google Scholar] [CrossRef]
- Yau, A.W.; Whalen, B.A.; Peterson, W.K.; Shelley, E.G. Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J. Geophys. Res. Space Phys. 1984, 89, 5507–5522. [Google Scholar] [CrossRef]
- Loranc, M.; Hanson, W.B.; Heelis, R.A.; Stmaurice, J.P. A morphological study of vertical ionospheric flows in the high-latitude F region. J. Geophys. Res. Space Phys. 1991, 96, 3627–3646. [Google Scholar] [CrossRef]
- Wu, J.; Blanc, M.; Alcayde, D.; Barakat, A.R.; Fontanari, J.; Blelly, P.L.; Kofman, W. Observations of the structure and vertical transport of the polar upper ionosphere with the EISCAT VHF radar .2. 1st investigations of the topside O+ and H+ vertical ion flows. Ann. Geophys. 1992, 10, 375–393. [Google Scholar]
- Lockwood, M.; Waite, J.H., Jr.; Moore, T.E.; Chappell, C.R.; Johnson, J.F.E. A new source of suprathermal O+ ions near the dayside polar cap boundary. J. Geophys. Res. Space Phys. 1985, 90, 4099–4116. [Google Scholar] [CrossRef]
- Malingre, M.; Dubouloz, N.; Berthelier, J.J.; Galperin, Y.; Chugunin, D.; Perraut, S.; Sauvaud, J.A.; Delcourt, D.; Stepanov, V. Low-energy upflowing ion events at the poleward boundary of the nightside auroral oval: High-altitude Interball-Auroral probe observations. J. Geophys. Res. Space Phys. 2000, 105, 18693–18708. [Google Scholar] [CrossRef]
- Yeh, H.C.; Foster, J.C. Storm time heavy ion outflow at mid-latitude. J. Geophys. Res. Space Phys. 1990, 95, 7881–7891. [Google Scholar] [CrossRef]
- Erickson, P.J.; Goncharenko, L.P.; Nicolls, M.J.; Ruohoniemi, M.; Kelley, M.C. Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm. J. Atmos. Terr. Phys. 2010, 72, 292–301. [Google Scholar] [CrossRef]
- Anderson, P.C.; Heelis, R.A.; Hanson, W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. Space Phys. 1991, 96, 5785–5792. [Google Scholar] [CrossRef]
- Moffett, R.J.; Heelis, R.A.; Sellek, R.; Bailey, G.J. The temporal evolution of the ionospheric signatures of subauroral ion drifts. Planet. Space Sci. 1992, 40, 663–670. [Google Scholar] [CrossRef]
- Heelis, R.A.; Bailey, G.J.; Sellek, R.; Moffett, R.J.; Jenkins, B. Field-aligned drifts in subauroral ion drift events. J. Geophys. Res. Space Phys. 1993, 98, 21493. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods. Ann. Geophys. 2013, 31, 1521–1534. [Google Scholar] [CrossRef]
- Sellek, R.; Bailey, G.J.; Moffett, R.J.; Heelis, R.A.; Anderson, P.C. Effects of large zonal plasma drifts on the subauroral ionosphere. J. Atmos. Terr. Phys. 1991, 53, 557–565. [Google Scholar] [CrossRef]
- Korosmezey, A.; Rasmussen, C.E.; Gombosi, T.I.; Khazanov, G.V. Anisotropic ion heating and parallel O+ acceleration in regions of rapid E×B convection. Geophys. Res. Lett. 1992, 19, 2289–2292. [Google Scholar] [CrossRef]
- Horvath, I.; Brian, C.L. Investigating the development of double-peak subauroral ion drift (DSAID). J. Geophys. Res. Space Phys. 2017, 122, 4525–4542. [Google Scholar] [CrossRef]
- Solomon, S.C.; Qian, L.Y. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 2005, 110, A10306. [Google Scholar] [CrossRef]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. Space Phys. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Weimer, D.R. Improved ionospheric electrodynamic models, and application to calculating Joule heating rates. J. Geophys. Res. Space Phys. 2005, 110, A05306. [Google Scholar] [CrossRef]
- Hagan, M.E.; Burrage, M.D.; Forbes, J.M.; Hackney, J.; Randel, W.J.; Zhang, X. GSWM-98: Results for migrating solar tides. J. Geophys. Res. Space Phys. 1999, 104, 6813–6827. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M.J. Large-scale convection patterns observed by DMSP. J. Geophys. Res. Space Phys. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Kilpua, E.; Keika, K. Pileup accident hypothesis of a magnetic storm on 17 March 2015. Geophys. Res. Lett. 2015, 42, 5155–5161. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS). Ann. Geophys. 2011, 29, 1277–1286. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Foster, J.C.; Holt, J.M.; Coster, A.J.; Makela, J.J.; Noto, J.; Meriwether, J.W.; Harding, B.J.; Riccobono, J.; et al. Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophys. Res. Lett. 2015, 42, 5132–5140. [Google Scholar] [CrossRef]
- Wu, Q.; Noto, J.; Kerr, R.; Kapali, S.; Riccobono, J.; Wang, W.B.; Talaat, E.R. First Palmer and Millstone Hillmidlatitude conjugate observation of thermospheric winds. J. Geophys. Res. Space Phys. 2014, 119, 3016–3028. [Google Scholar] [CrossRef]
- Zhang, K.D.; Wang, H.; Wang, W.B.; Liu, J.; Zhang, S.R.; Sheng, C. Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect. Earth Planet. Phys. 2021, 5, 52–62. [Google Scholar] [CrossRef]
- Qiao, Z.; Yuan, Z.G.; Tu, J.N. A Simulation of the Field-Aligned Plasma Transport in the Plasmaspheric Plume During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2019, 124, 8617–8628. [Google Scholar] [CrossRef]
- Rishbeth, H.; Garriott, O.K. Introduction to Ionospheric Physics; Academic Press: Cambridge, MA, USA, 1969. [Google Scholar]
- He, M.; Liu, L.; Wan, W.; Zhao, B. A study on the nighttime midlatitude ionospheric trough. J. Geophys. Res. Space Phys. 2011, 116, A05315. [Google Scholar] [CrossRef]
- Liu, X.Q.; Liu, J.; Wang, W.B.; Zhang, S.R.; Zhang, K.D.; Lei, J.H.; Liu, L.B.; Chen, X.T.; Li, S.H.; Zhang, Q.H.; et al. Explaining solar flare-induced ionospheric ion upflow at Millstone Hill (42.6°N). J. Geophys. Res. Space Phys. 2022, 127, e2021JA030185. [Google Scholar] [CrossRef]
- Guo, J.P.; Deng, Y.; Zhang, D.H.; Lu, Y.; Sheng, C.; Zhang, S.R. The Effect of Subauroral Polarization Streams on Ionosphere and Thermosphere During the 2015 St. Patrick’s Day Storm: Global Ionosphere-Thermosphere Model Simulations. J. Geophys. Res. Space Phys. 2018, 123, 2241–2256. [Google Scholar] [CrossRef]
- Zou, Y.; Lyons, L.R.; Shi, X.L.; Liu, J.; Wu, Q.; Conde, M.; Shepherd, S.G.; Mende, S.; Zhang, Y.L.; Coster, A. Effects of Subauroral Polarization Streams on the Upper Thermospheric Winds During Non-Storm Time. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029988. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Hausler, K.; Ritter, P. Effect of subauroral polarization streams on the thermosphere: A statistical study. J. Geophys. Res. Space Phys. 2011, 116, A03312. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ma, S.Y. The relation between subauroral polarization streams, westward ion fluxes, and zonal wind: Seasonal and hemispheric variations. J. Geophys. Res. Space Phys. 2012, 117, A04323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, J.; Li, Q. Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sens. 2022, 14, 6315. https://doi.org/10.3390/rs14246315
Li S, Liu J, Li Q. Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sensing. 2022; 14(24):6315. https://doi.org/10.3390/rs14246315
Chicago/Turabian StyleLi, Shuhan, Jing Liu, and Qiaoling Li. 2022. "Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams" Remote Sensing 14, no. 24: 6315. https://doi.org/10.3390/rs14246315
APA StyleLi, S., Liu, J., & Li, Q. (2022). Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sensing, 14(24), 6315. https://doi.org/10.3390/rs14246315