Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams
Abstract
:1. Introduction
2. Model and Observation Description
3. Results
3.1. Observation and Simulation of 17–18 March 2015 Superstorm
3.2. Physical Mechanisms of SAPS-Induced Ion Upflow
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mayr, H.G.; Volland, H. Magnetic storm characteristics of the thermosphere. J. Geophys. Res. 1973, 78, 2251–2264. [Google Scholar] [CrossRef] [Green Version]
- Cai, X.G.; Burns, A.G.; Wang, W.B.; Qian, L.Y.; Solomon, S.C.; Eastes, R.W.; McClintock, W.E.; Laskar, F.I. Investigation of a neutral “tongue” observed by GOLD during the geomagnetic storm on May 11, 2019. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028817. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Response of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Yue, X.N.; Wang, W.B.; Lei, J.H.; Burns, A.; Zhang, Y.L.; Wan, W.X.; Liu, L.B.; Hu, L.H.; Zhao, B.Q.; Schreiner, W.S. Long-lasting negative ionospheric storm effects in low and middle latitudes during the recovery phase of the 17 March 2013 geomagnetic storm. J. Geophys. Res. Space Phys. 2016, 121, 9234–9249. [Google Scholar] [CrossRef] [Green Version]
- Rajesh, P.K.; Lin, C.H.; Lin, C.Y.; Chen, C.H.; Liu, J.Y.; Matsuo, T.; Chen, S.P.; Yeh, W.H.; Huang, C.Y. Extreme positive ionosphere storm triggered by a minor magnetic storm in deep solar minimum revealed by FORMOSAT-7/COSMIC-2 and GNSS observations. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028261. [Google Scholar] [CrossRef]
- Foster, J.C.; Coster, A.J.; Erickson, P.J.; Holt, J.M.; Lind, F.D.; Rideout, W.; McCready, M.; van Eyken, A.; Barnes, R.J.; Greenwald, R.A.; et al. Multiradar observations of the polar tongue of ionization. J. Geophys. Res. Space Phys. 2005, 110, A09S31. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.B.; Burns, A.; Yue, X.A.; Zhang, S.R.; Zhang, Y.L.; Huang, C.S. Profiles of ionospheric storm-enhanced density during the 17 March 2015 great storm. J. Geophys. Res. Space Phys. 2016, 121, 727–744. [Google Scholar] [CrossRef]
- Galperin, Y.; Ponomarev, V.N.; Zosimova, A.G. Plasma convection in the polar ionosphere. Ann. Geophys. 1974, 30, 1–7. [Google Scholar]
- Spiro, R.W.; Heelis, R.H.; Hanson, W.B. Rapid sub-auroral ion drifts observed by Atmospheric Explorer C. Geophys. Res. Lett. 1979, 6, 657–660. [Google Scholar] [CrossRef]
- Foster, J.C.; Vo, H.B. Average characteristics and activity dependence of the subauroral polarization stream. J. Geophys. Res. Space Phys. 2002, 107, 1475. [Google Scholar] [CrossRef] [Green Version]
- Kunduri, B.S.R.; Baker, J.B.H.; Ruohoniemi, J.M.; Coster, A.J.; Vines, S.K.; Anderson, B.J.; Shepherd, S.G.; Chartier, A.T. An Examination of Magnetosphere-Ionosphere Influences During a SAPS Event. Geophys. Res. Lett. 2021, 48, e2021GL095751. [Google Scholar] [CrossRef]
- Southwood, D.J.; Wolf, R.A. An assessment of the role of precipitation in magnetospheric convection. J. Geophys. Res. Space Phys. 1978, 83, 5227–5232. [Google Scholar] [CrossRef]
- Anderson, P.C.; Hanson, W.B.; Heelis, R.A.; Craven, J.D.; Baker, D.N.; Frank, L.A. A proposed production model of rapid subauroral ion drifts and their relationship to substorm evolution. J. Geophys. Res. Space Phys. 1993, 98, 6069–6078. [Google Scholar] [CrossRef]
- Schunk, R.W.; Raitt, W.J.; Banks, P.M. Effect of Electric-Fields on Daytime High Latitude E and F Regions. J. Geophys. Res. Space Phys. 1975, 80, 3121–3130. [Google Scholar] [CrossRef]
- Wolf, R.A.; Spiro, R.W.; Sazykin, S.; Toffoletto, F.R. How the Earth’s inner magnetosphere works: An evolving picture. J. Geophys. Res. Space Phys. 2007, 69, 288–302. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Zhang, Y.L.; Wang, W.B.; Huang, C.S.; Coster, A.J.; Holt, J.M.; Foster, J.F.; Sulzer, M.; Kerr, R. Observations of ion-neutral coupling associated with strong electrodynamic disturbances during the 2015 St. Patrick’s Day storm. J. Geophys. Res. Space Phys. 2017, 122, 1314–1337. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lühr, H.; Ridley, A.; Huang, T. The spatial distribution of region 2 field-aligned currents relative to subauroral polarization stream. Ann. Geophys. 2014, 32, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Wang, W.B.; Qian, L.Y.; Lotko, W.; Burns, A.G.; Pharr, K.; Lug, G.; Solomon, S.C.; Liu, L.B.; Wan, W.X.; et al. Solar flare effects in the Earth’s magnetosphere. Nat. Phys. 2021, 17, 807. [Google Scholar] [CrossRef]
- Goldstein, J.; Burch, J.L.; Sandel, B.R.; Mende, S.B.; Brandt, P.C.S.; Hairston, M.R. Coupled response of the inner magnetosphere and ionosphere on 17 April 2002. J. Geophys. Res. Space Phys. 2015, 110, A03205. [Google Scholar] [CrossRef] [Green Version]
- He, F.; Zhang, X.X.; Wang, W.B.; Liu, L.B.; Ren, Z.P.; Yue, X.A.; Hu, L.H.; Wan, W.X.; Wang, H. Large-Scale Structure of Subauroral Polarization Streams During the Main Phase of a Severe Geomagnetic Storm. J. Geophys. Res. Space Phys. 2018, 123, 2964–2973. [Google Scholar] [CrossRef]
- Horvath, I.; Lovell, B.C. Investigating Magnetosphere-Ionosphere-Thermosphere (M-I-T) Coupling Occurring During the 7-8 November 2004 Superstorm. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027484. [Google Scholar] [CrossRef]
- Wang, W.B.; Talaat, E.R.; Burns, A.G.; Emery, B.; Hsieh, S.Y.; Lei, J.H.; Xu, J.Y. Thermosphere and ionosphere response to subauroral polarization streams (SAPS): Model simulations. J. Geophys. Res. Space Phys. 2012, 117, A07301. [Google Scholar] [CrossRef] [Green Version]
- Zou, S.; Lyons, L.R.; Wang, C.P.; Boudouridis, A.; Ruohoniemi, J.M.; Anderson, P.C.; Dyson, P.L.; Devlin, J.C. On the coupling between the Harang reversal evolution and substorm dynamics: A synthesis of SuperDARN, DMSP, and IMAGE observations. J. Geophys. Res. Space Phys. 2009, 114, A01205. [Google Scholar] [CrossRef] [Green Version]
- Raeder, J.; Cramer, W.D.; Jensen, J.; Fuller-Rowell, T.; Maruyama, N.; Toffoletto, F.; Vo, H. Sub-Auroral Polarization Streams: A complex interaction between the magnetosphere, ionosphere, and thermosphere. J. Phys. Conf. Ser. 2016, 767, 012021. [Google Scholar] [CrossRef]
- Lin, D.; Wang, W.B.; Scales, W.A.; Pham, K.; Liu, J.; Zhang, B.Z.; Merkin, V.; Shi, X.L.; Kunduri, B.; Maimaiti, M. SAPS in the 17 March 2013 Storm Event: Initial Results From the Coupled Magnetosphere-Ionosphere-Thermosphere Model. J. Geophys. Res. Space Phys. 2019, 124, 6212–6225. [Google Scholar] [CrossRef]
- Wei, D.; Yu, Y.Q.; Ridley, A.J.; Cao, J.B. Multi-point observations and modeling of subauroral polarization streams (SAPS) and double-peak subauroral ion drifts (DSAIDs): A case study. Adv. Space Res. 2019, 63, 3522–3535. [Google Scholar] [CrossRef]
- Yau, A.W.; Whalen, B.A.; Peterson, W.K.; Shelley, E.G. Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J. Geophys. Res. Space Phys. 1984, 89, 5507–5522. [Google Scholar] [CrossRef]
- Loranc, M.; Hanson, W.B.; Heelis, R.A.; Stmaurice, J.P. A morphological study of vertical ionospheric flows in the high-latitude F region. J. Geophys. Res. Space Phys. 1991, 96, 3627–3646. [Google Scholar] [CrossRef]
- Wu, J.; Blanc, M.; Alcayde, D.; Barakat, A.R.; Fontanari, J.; Blelly, P.L.; Kofman, W. Observations of the structure and vertical transport of the polar upper ionosphere with the EISCAT VHF radar .2. 1st investigations of the topside O+ and H+ vertical ion flows. Ann. Geophys. 1992, 10, 375–393. [Google Scholar]
- Lockwood, M.; Waite, J.H., Jr.; Moore, T.E.; Chappell, C.R.; Johnson, J.F.E. A new source of suprathermal O+ ions near the dayside polar cap boundary. J. Geophys. Res. Space Phys. 1985, 90, 4099–4116. [Google Scholar] [CrossRef] [Green Version]
- Malingre, M.; Dubouloz, N.; Berthelier, J.J.; Galperin, Y.; Chugunin, D.; Perraut, S.; Sauvaud, J.A.; Delcourt, D.; Stepanov, V. Low-energy upflowing ion events at the poleward boundary of the nightside auroral oval: High-altitude Interball-Auroral probe observations. J. Geophys. Res. Space Phys. 2000, 105, 18693–18708. [Google Scholar] [CrossRef] [Green Version]
- Yeh, H.C.; Foster, J.C. Storm time heavy ion outflow at mid-latitude. J. Geophys. Res. Space Phys. 1990, 95, 7881–7891. [Google Scholar] [CrossRef]
- Erickson, P.J.; Goncharenko, L.P.; Nicolls, M.J.; Ruohoniemi, M.; Kelley, M.C. Dynamics of North American sector ionospheric and thermospheric response during the November 2004 superstorm. J. Atmos. Terr. Phys. 2010, 72, 292–301. [Google Scholar] [CrossRef]
- Anderson, P.C.; Heelis, R.A.; Hanson, W.B. The ionospheric signatures of rapid subauroral ion drifts. J. Geophys. Res. Space Phys. 1991, 96, 5785–5792. [Google Scholar] [CrossRef]
- Moffett, R.J.; Heelis, R.A.; Sellek, R.; Bailey, G.J. The temporal evolution of the ionospheric signatures of subauroral ion drifts. Planet. Space Sci. 1992, 40, 663–670. [Google Scholar] [CrossRef]
- Heelis, R.A.; Bailey, G.J.; Sellek, R.; Moffett, R.J.; Jenkins, B. Field-aligned drifts in subauroral ion drift events. J. Geophys. Res. Space Phys. 1993, 98, 21493. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H. Seasonal variation of the ion upflow in the topside ionosphere during SAPS (subauroral polarization stream) periods. Ann. Geophys. 2013, 31, 1521–1534. [Google Scholar] [CrossRef]
- Sellek, R.; Bailey, G.J.; Moffett, R.J.; Heelis, R.A.; Anderson, P.C. Effects of large zonal plasma drifts on the subauroral ionosphere. J. Atmos. Terr. Phys. 1991, 53, 557–565. [Google Scholar] [CrossRef]
- Korosmezey, A.; Rasmussen, C.E.; Gombosi, T.I.; Khazanov, G.V. Anisotropic ion heating and parallel O+ acceleration in regions of rapid E×B convection. Geophys. Res. Lett. 1992, 19, 2289–2292. [Google Scholar] [CrossRef] [Green Version]
- Horvath, I.; Brian, C.L. Investigating the development of double-peak subauroral ion drift (DSAID). J. Geophys. Res. Space Phys. 2017, 122, 4525–4542. [Google Scholar] [CrossRef]
- Solomon, S.C.; Qian, L.Y. Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. Space Phys. 2005, 110, A10306. [Google Scholar] [CrossRef] [Green Version]
- Heelis, R.A.; Lowell, J.K.; Spiro, R.W. A model of the high-latitude ionospheric convection pattern. J. Geophys. Res. Space Phys. 1982, 87, 6339–6345. [Google Scholar] [CrossRef]
- Weimer, D.R. Improved ionospheric electrodynamic models, and application to calculating Joule heating rates. J. Geophys. Res. Space Phys. 2005, 110, A05306. [Google Scholar] [CrossRef]
- Hagan, M.E.; Burrage, M.D.; Forbes, J.M.; Hackney, J.; Randel, W.J.; Zhang, X. GSWM-98: Results for migrating solar tides. J. Geophys. Res. Space Phys. 1999, 104, 6813–6827. [Google Scholar] [CrossRef]
- Rich, F.J.; Hairston, M.J. Large-scale convection patterns observed by DMSP. J. Geophys. Res. Space Phys. 1994, 99, 3827–3844. [Google Scholar] [CrossRef]
- Kataoka, R.; Shiota, D.; Kilpua, E.; Keika, K. Pileup accident hypothesis of a magnetic storm on 17 March 2015. Geophys. Res. Lett. 2015, 42, 5155–5161. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H. The efficiency of mechanisms driving Subauroral Polarization Streams (SAPS). Ann. Geophys. 2011, 29, 1277–1286. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.R.; Erickson, P.J.; Foster, J.C.; Holt, J.M.; Coster, A.J.; Makela, J.J.; Noto, J.; Meriwether, J.W.; Harding, B.J.; Riccobono, J.; et al. Thermospheric poleward wind surge at midlatitudes during great storm intervals. Geophys. Res. Lett. 2015, 42, 5132–5140. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Noto, J.; Kerr, R.; Kapali, S.; Riccobono, J.; Wang, W.B.; Talaat, E.R. First Palmer and Millstone Hillmidlatitude conjugate observation of thermospheric winds. J. Geophys. Res. Space Phys. 2014, 119, 3016–3028. [Google Scholar] [CrossRef]
- Zhang, K.D.; Wang, H.; Wang, W.B.; Liu, J.; Zhang, S.R.; Sheng, C. Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect. Earth Planet. Phys. 2021, 5, 52–62. [Google Scholar] [CrossRef]
- Qiao, Z.; Yuan, Z.G.; Tu, J.N. A Simulation of the Field-Aligned Plasma Transport in the Plasmaspheric Plume During the 2015 St. Patrick’s Day Storm. J. Geophys. Res. Space Phys. 2019, 124, 8617–8628. [Google Scholar] [CrossRef]
- Rishbeth, H.; Garriott, O.K. Introduction to Ionospheric Physics; Academic Press: Cambridge, MA, USA, 1969. [Google Scholar]
- He, M.; Liu, L.; Wan, W.; Zhao, B. A study on the nighttime midlatitude ionospheric trough. J. Geophys. Res. Space Phys. 2011, 116, A05315. [Google Scholar] [CrossRef]
- Liu, X.Q.; Liu, J.; Wang, W.B.; Zhang, S.R.; Zhang, K.D.; Lei, J.H.; Liu, L.B.; Chen, X.T.; Li, S.H.; Zhang, Q.H.; et al. Explaining solar flare-induced ionospheric ion upflow at Millstone Hill (42.6°N). J. Geophys. Res. Space Phys. 2022, 127, e2021JA030185. [Google Scholar] [CrossRef]
- Guo, J.P.; Deng, Y.; Zhang, D.H.; Lu, Y.; Sheng, C.; Zhang, S.R. The Effect of Subauroral Polarization Streams on Ionosphere and Thermosphere During the 2015 St. Patrick’s Day Storm: Global Ionosphere-Thermosphere Model Simulations. J. Geophys. Res. Space Phys. 2018, 123, 2241–2256. [Google Scholar] [CrossRef]
- Zou, Y.; Lyons, L.R.; Shi, X.L.; Liu, J.; Wu, Q.; Conde, M.; Shepherd, S.G.; Mende, S.; Zhang, Y.L.; Coster, A. Effects of Subauroral Polarization Streams on the Upper Thermospheric Winds During Non-Storm Time. J. Geophys. Res. Space Phys. 2022, 127, e2021JA029988. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Hausler, K.; Ritter, P. Effect of subauroral polarization streams on the thermosphere: A statistical study. J. Geophys. Res. Space Phys. 2011, 116, A03312. [Google Scholar] [CrossRef]
- Wang, H.; Lühr, H.; Ma, S.Y. The relation between subauroral polarization streams, westward ion fluxes, and zonal wind: Seasonal and hemispheric variations. J. Geophys. Res. Space Phys. 2012, 117, A04323. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Liu, J.; Li, Q. Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sens. 2022, 14, 6315. https://doi.org/10.3390/rs14246315
Li S, Liu J, Li Q. Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sensing. 2022; 14(24):6315. https://doi.org/10.3390/rs14246315
Chicago/Turabian StyleLi, Shuhan, Jing Liu, and Qiaoling Li. 2022. "Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams" Remote Sensing 14, no. 24: 6315. https://doi.org/10.3390/rs14246315
APA StyleLi, S., Liu, J., & Li, Q. (2022). Explaining Ionospheric Ion Upflow in the Subauroral Polarization Streams. Remote Sensing, 14(24), 6315. https://doi.org/10.3390/rs14246315