Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. ICESat-2
2.2.2. SRTM Data
2.2.3. ERA5 Reanalysis Data
2.3. DEM Coregistration
2.4. Penetration Depth and Glacier Elevation Change
2.5. Glacial Mass Balance Calculation
2.6. Data Uncertainty
2.6.1. Elevation Change Uncertainty
2.6.2. Mass Balance Uncertainty
3. Results
3.1. Penetration Depths
3.2. Glacial Elevation Change
3.3. Glacial Mass Balance
3.4. Changes in Climatic Factors
4. Discussion
4.1. Comparison with Previous Studies
4.2. Climate Factors Influencing the Glacier Mass Balance
4.3. Topographical and Debris-Covered Glacier Impacts on Glacier Mass Balance
4.4. Limitations and Future Research
5. Conclusions
- (1)
- In general, the surface elevation of the glacier in low-altitude areas decreased, and the surface elevation of the glacier in high-altitude areas increased. During the 21 years, the annual mean change rate of the glacier elevation in the Karakoram region was 0.04 ± 0.12 m yr−1 between 2000 and 2021, among which the change rate of glaciers distributed between 4000–6500 m a.s.l. was relatively small, while the glaciers at other altitudes experienced larger elevation changes.
- (2)
- From 2000 to 2021, the Karakoram glaciers showed a slight positive mass budget of 0.02 ± 0.09 m w.e.yr−1. However, the glacier mass balance was not uniform throughout the whole Karakoram region. The glaciers in Western and Central Karakoram experienced mass gains, while the glaciers in Eastern Karakoram experienced mass loss. During the 21 years, mass gains on the tops of the glaciers were the most evident.
- (3)
- From 2000 to 2021, the annual mean air temperature and precipitation of the Karakoram Mountains increased. The annual warming trend gradually slowed from west to east, while the summer temperature in the Karakoram showed a decreasing trend. The Karakoram glaciers were sensitive to the air temperature and precipitation. The increasing precipitation was a main climatic driver for the glacier mass gains in Western and Central Karakoram, and increasing temperature contributed to the glacier mass loss in Eastern Karakoram. In addition, decreasing radiation and increasing cloud cover led to a reduction in received radiation by glaciers, which further inhibited glacier ice mass ablation.
- (4)
- The topographic shadow and debris cover on the glacier surface increased the self-protection ability of the glaciers in the Karakoram, effectively restraining glacier melting and playing a positive role in diminishing Karakoram glacier ice mass loss. Extraction of the quantitative relationships between influential factors (topographic shadow and debris cover) and glacier mass change could be considered and investigated in future research plans.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zemp, M.; Thibert, E.; Huss, M.; Stumm, D.; Rolstad Denby, C.; Nuth, C.; Nussbaumer, S.U.; Moholdt, G.; Mercer, A.; Mayer, C.; et al. Reanalysing Glacier Mass Balance Measurement Series. Cryosphere 2013, 7, 1227–1245. [Google Scholar] [CrossRef] [Green Version]
- Hewitt, K. The Karakoram Anomaly? Glacier Expantion and the “Elevation Effect,” Karakoram Himalaya. Mt. Res. Dev. 2005, 25, 332–340. [Google Scholar] [CrossRef] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight Mass Gain of Karakoram Glaciers in the Early Twenty-First Century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending Estimates of 2003–2008 Glacier Mass Balance over the Pamir-Karakoram-Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Gardelle, J.; Berthier, E.; Arnaud, Y.; Kääb, A. Region-Wide Glacier Mass Balances over the Pamir-Karakoram-Himalaya during 1999. Cryosphere 2013, 7, 1263–1286. [Google Scholar] [CrossRef] [Green Version]
- Bolch, T.; Pieczonka, T.; Mukherjee, K.; Shea, J. Brief communication: Glaciers in the Hunza catchment (Karakoram) have been nearly in balance since the 1970s. Cryosphere 2017, 11, 531–539. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J. Slight glacier mass loss in the Karakoram region during the 1970s to 2000 revealed by KH-9 images and SRTM DEM. J. Glaciol. 2017, 63, 331–342. [Google Scholar] [CrossRef] [Green Version]
- Azam, M.F.; Wagnon, P.; Berthier, E.; Vincent, C.; Fujita, K.; Kargel, J.S. Review of the status and mass changes of Himalayan Karakoram glacier. J. Glaciol. 2018, 64, 61–74. [Google Scholar] [CrossRef] [Green Version]
- You, Q.L.; Ren, G.Y.; Zhang, Y.Q.; Ren, Y.Y.; Sun, X.B.; Zhan, Y.J.; Shrestha, A.B.; Krishnan, R. An overview of studies of observed climate change in the Hindu Kush Himalayan (HKH) region. Adv. Clim. Res. 2017, 8, 141–147. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, M.; Li, Z.; Li, H.; Wang, S.; Sun, M.; Zha, S. Glacier Mass-Balance and Length Variation Observed in China during the Periods 1959-2015 and 1930-2014. Quat. Int. 2017, 454, 68–84. [Google Scholar] [CrossRef]
- Fox-Kemper, B.; Hewitt, H.T.; Xiao, C.; Aðalgeirsdóttir, G.; Drijfhout, S.S.; Edwards, T.L.; Golledge, N.R.; Hemer, M. Ocean, Cryosphere and Sea Level Change. In Climate Change 2021: The Physical 12 Science Basis; Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental 13 Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; In press. [Google Scholar]
- Farinotti, D.; Immerzeel, W.W.; de Kok, R.J.; Quincey, D.J.; Dehecq, A. Manifestations and Mechanisms of the Karakoram Glacier Anomaly. Nat. Geosci. 2020, 13, 8–16. [Google Scholar] [CrossRef]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A Spatially Resolved Estimate of High Mountain Asia Glacier Mass Balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.A.; Yi, C.; Xu, X.; Li, Y. Glacier status during the period 1973-2014 in the hunza basin, western karakoram. Quat. Int. 2017, 444, 125–136. [Google Scholar] [CrossRef]
- Lin, H.; Li, G.; Cuo, L.; Hooper, A.; Ye, Q. A Decreasing Glacier Mass Balance Gradient from the Edge of the Upper Tarim Basin to the Karakoram during 2000-2014. Sci. Rep. 2017, 7, 6712. [Google Scholar] [CrossRef]
- Rankl, M.; Braun, M. Glacier elevation and mass changes over the central karakoram region estimated from tandem-x and srtm/x-sar digital elevation models. Ann. Glaciol. 2016, 51, 273–281. [Google Scholar] [CrossRef] [Green Version]
- Vijay, S.; Braun, M. Early 21st century spatially detailed elevation changes of jammu and kashmir glaciers (karakoram–himalaya). Glob. Planet. Change 2018, 165, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Negi, H.S.; Kumar, K. Long-term mass balance modeling (1986–2018) and climate sensitivity of siachen glacier, east-karakoram. Environ. Monit. Assess. 2020, 192, 1–16. [Google Scholar] [CrossRef]
- Norris, J.; Carvalho, L.M.V.; Jones, C.; Cannon, F. Deciphering the contrasting climatic trends between the central himalaya and karakoram with 36 years of WRF simulations. Clim. Dyn. 2019, 52, 159–180. [Google Scholar] [CrossRef]
- Bashir, F.; Zeng, X.; Gupta, H.; Hazenberg, P. A Hydrometeorological Perspective on the Karakoram Anomaly Using Unique Valley-Based Synoptic Weather Observations. Geophys. Res. Lett. 2017, 44, 478. [Google Scholar] [CrossRef]
- Sakai, A.; Fujita, K. Contrasting glacier responses to recent climate change in high-mountain Asia. Sci. Rep. 2017, 7, 13717. [Google Scholar] [CrossRef] [Green Version]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A Systematic, Regional Assessment of High Mountain Asia Glacier Mass Balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Farinotti, D.; Huss, M.; Dussaillant, I.; Brun, F.; et al. Accelerated Global Glacier Mass Loss in the Early Twenty-First Century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef]
- Treichler, D.; Kääb, A.; Salzmann, N.; Xu, C.Y. Recent Glacier and Lake Changes in High Mountain Asia and Their Relation to Precipitation Changes. Cryosphere 2019, 13, 2977–3005. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Fricker, H.A.; Gardner, A.S.; Medley, B.; Nilsson, J.; Paolo, F.S.; Holschuh, N.; Adusumilli, S.; Brunt, K.; Csatho, B.; et al. Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 2020, 368, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yi, S.; Sun, W. Continuous Estimates of Glacier Mass Balance in High Mountain Asia Based on ICESat-1,2 and GRACE/GRACE Follow-On Data. Geophys. Res. Lett. 2021, 48, 90–95. [Google Scholar] [CrossRef]
- Dimri, A.P. Decoding the Karakoram Anomaly. Sci. Total Environ. 2021, 788, 147864. [Google Scholar] [CrossRef] [PubMed]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2): Science Requirements, Concept, and Implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Smith, B.; Fricker, H.A.; Holschuh, N.; Gardner, A.S.; Adusumilli, S.; Brunt, K.M.; Csatho, B.; Harbeck, K.; Huth, A.; Neumann, T.; et al. Land Ice Height-Retrieval Algorithm for NASA’s ICESat-2 Photon-Counting Laser Altimeter. Remote Sens. Environ. 2019, 233, 111352. [Google Scholar] [CrossRef] [Green Version]
- Kolecka, N.; Kozak, J. Assessment of the Accuracy of SRTM C- and X-Band High Mountain Elevation Data: A Case Study of the Polish Tatra Mountains. Pure Appl. Geophys. 2014, 171, 897–912. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Nuth, C.; Kääb, A. Co-Registration and Bias Corrections of Satellite Elevation Data Sets for Quantifying Glacier Thickness Change. Cryosphere 2011, 5, 271–290. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.H.; Bolch, T.; Ding, Y.J.; Kröhnert, M.; Pieczonka, T.; Wetzel, H.U.; Liu, S.Y. Mass Changes of Southern and Northern Inylchek Glacier, Central Tian Shan, Kyrgyzstan, during ∼1975 and 2007 Derived from Remote Sensing Data. Cryosphere 2015, 9, 703–717. [Google Scholar] [CrossRef] [Green Version]
- Rott, H.; Sturm, K.; Miller, H. Active and passive microwave signatures of Antarctic firn by means of field measurements and satellite data. Ann. Glaciol. 1993, 17, 337–343. [Google Scholar] [CrossRef] [Green Version]
- Abdel Jaber, W.; Rott, H.; Floricioiu, D.; Wuite, J.; Miranda, N. Heterogeneous Spatial and Temporal Pattern of Surface Elevation Change and Mass Balance of the Patagonian Ice Fields between 2000 and 2016. Cryosphere 2019, 13, 2511–2535. [Google Scholar] [CrossRef] [Green Version]
- Neelmeijer, J.; Motagh, M.; Bookhagen, B. High-Resolution Digital Elevation Models from Single-Pass TanDEM-X Interferometry over Mountainous Regions: A Case Study of Inylchek Glacier, Central Asia. ISPRS J. Photogramm. Remote Sens. 2017, 130, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Density Assumptions for Converting Geodetic Glacier Volume Change to Mass Change. Cryosphere 2013, 7, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Liu, S.; Jiang, Z.; Xu, J.; Wei, J.; Guo, W. Recent Glacier Mass Balance and Area Changes in the Kangri Karpo Mountains from DEMs and Glacier Inventories. Cryosphere 2018, 12, 103–121. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Glacier Mass Balance in the Qinghai–Tibet Plateau and Its Surroundings from the Mid-1970s to 2000 Based on Hexagon KH-9 and SRTM DEMs. Remote Sens. Environ. 2018, 210, 96–112. [Google Scholar] [CrossRef]
- Moholdt, G.; Hagen, J.O.; Eiken, T.; Schuler, T.V. Geometric Changes and Mass Balance of the Austfonna Ice Cap, Svalbard. Cryosphere 2010, 4, 21–34. [Google Scholar] [CrossRef]
- Nuth, C.; Kohler, J.; Aas, H.F.; Brandt, O.; Hagen, J.O. Glacier geometry and elevation changes on Svalbard (1936–1990): A baseline dataset. Ann. Glaciol. 2007, 46, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Rolstad, C.; Haug, T.; Denby, B. Spatially Integrated Geodetic Glacier Mass Balance and Its Uncertainty Based on Geostatistical Analysis: Application to the Western Svartisen Ice Cap, Norway. J. Glaciol. 2009, 55, 666–680. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, A.; Bolch, T.; Mukherjee, K.; Pieczonka, T.; Kropáček, J.; Buchroithner, M.F. Overall Recession and Mass Budget of Gangotri Glacier, Garhwal Himalayas, from 1965 to 2015 Using Remote Sensing Data. J. Glaciol. 2016, 62, 1115–1133. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hou, S.; Huai, B.; An, W.; Pang, H.; Liu, Y. Glacier Anomaly over the Western Kunlun Mountains, Northwestern Tibetan Plateau, since the 1970s. J. Glaciol. 2018, 64, 624–636. [Google Scholar] [CrossRef] [Green Version]
- Fan, Y.; Ke, C.-Q.; Zhou, X.; Shen, X.; Yu, X.; Lhakpa, D. Glacier mass-balance estimates over High Mountain Asia from 2000 to 2021 based on ICESat-2 and NASADEM. J. Glaciol. 2022, 1–13. [Google Scholar] [CrossRef]
- Berthier, E.; Brun, F. Karakoram Geodetic Glacier Mass Balances between 2008 and 2016: Persistence of the Anomaly and Influence of a Large Rock Avalanche on Siachen Glacier. J. Glaciol. 2019, 65, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Millan, R.; Berthier, E.; Gourmelen, N.; Trouvé, E.; Vionnet, V. Elevation Changes Inferred from TanDEM-X Data over the Mont-Blanc Area: Impact of the X-Band Interferometric Bias. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3870–3882. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Hu, J.; Li, Z.; Li, J.; Zhao, R.; Ding, X. Quantifying Glacier Mass Change and Its Contribution to Lake Growths in Central Kunlun during 2000–2015 from Multi-Source Remote Sensing Data. J. Hydrol. 2019, 570, 38–50. [Google Scholar] [CrossRef]
- Oerlemans, J. Extracting a Climate Signal from 169 Glacier Records. Science 2005, 308, 675–677. [Google Scholar] [CrossRef] [Green Version]
- Bonekamp, P.N.J.; de Kok, R.; Collier, E.; Immerzeel, W.W. Contrasting Meteorological Drivers of the Glacier Mass Balance between the Karakoram and Central Himalaya. Front. Earth Sci. 2019, 7, 107. [Google Scholar] [CrossRef]
- Zafar, M.U.; Ahmed, M.; Rao, M.P.; Buckley, B.M.; Khan, N.; Wahab, M.; Palmer, J. Karakorum temperature out of phase with hemispheric trends for the past five centuries. Clim. Dyn. 2016, 46, 1943–1952. [Google Scholar] [CrossRef]
- Yao, T.D.; Thompson, L.; Yang, W.; Yu, W.S.; Gao, Y.; Guo, X.J.; Yang, X.X.; Duan, K.Q.; Zhao, H.B.; Xu, B.Q.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Winiger, M.; Gumpert, M.; Yamout, H. Karakorum-Hindukush-Western Himalaya: Assessing High-Altitude Water Resources. Hydrol. Process. 2005, 19, 2329–2338. [Google Scholar] [CrossRef]
- de Kok, R.J.; Tuinenburg, O.A.; Bonekamp, P.N.J.; Immerzeel, W.W. Irrigation as a Potential Driver for Anomalous Glacier Behavior in High Mountain Asia. Geophys. Res. Lett. 2018, 45, 2047–2054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Tung, K.-K. Global surface warming enhanced by weak Atlantic overturning circulation. Nature 2018, 559, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Waqas, A.; Athar, H. Recent decadal variability of daily observed temperatures in Hindukush, Karakoram and Himalaya region in northern Pakistan. Clim. Dyn. 2019, 52, 6931–6951. [Google Scholar] [CrossRef]
- Florentine, C.; Harper, J.; Fagre, D.; Moore, J.; Peitzsch, E. Local topography increasingly influences the mass balance of a retreating cirque glacier. Cryosphere 2018, 12, 2109–2122. [Google Scholar] [CrossRef] [Green Version]
- Olson, M.; Rupper, S. Impacts of topographic shading on direct solar radiation for valley glaciers in complex topography. Cryosphere 2019, 13, 29–40. [Google Scholar] [CrossRef] [Green Version]
- Bolibar, J.; Rabatel, A.; Gouttevin, I.; Galiez, C.; Condom, T.; Sauquet, E. Deep learning applied to glacier evolution modelling. Cryosphere 2020, 14, 565–584. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Ding, Y.; Shangguan, D.; Guo, W.; Zhao, Q.; Li, Y.; Song, M. Influence of Topographic Shading on the Mass Balance of the High Mountain Asia Glaciers. Remote Sens. 2022, 14, 1576. [Google Scholar] [CrossRef]
- Gunnar, Ø. Problems of Dating Ice-Cored Moraines. Geogr. Annaler. A Phys. Geogr. 1965, 47, 1–38. Available online: http://www.jstor.org/stable/520733 (accessed on 27 September 2022).
- Mattson, L.E.; Gardner, J.S.; Young, G.J. Ablation on Debris Covered Glaciers: An Example from the Rakhiot Glacier, Punjab, Himalaya. Snow Glacier Hydrol. 1993, 218, 289–296. [Google Scholar]
- Lundstrom, S.C. Photogratntnetric analysis of 1984-89 surface altitude change of the partially debris-covered Eliot Glacier, Mount Hood, Oregon, V.S.A. Ann. Glaciol. 1993, 17, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Reznichenko, N.; Davies, T.; Shulmeister, J.; McSaveney, M. Effects of debris on ice-surface melting rates: An experimental study. J. Glaciol. 2010, 56, 384–393. [Google Scholar] [CrossRef] [Green Version]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
- Xie, F.; Liu, S.; Gao, Y.; Zhu, Y.; Bolch, T.; Kääb, A.; Duan, S.; Miao, W.; Kang, J.; Zhang, Y. Interdecadal glacier inventories in the Karakoram since the 1990s. Earth Syst. Sci. Data 2022. Preprint. [Google Scholar] [CrossRef]
- Dobhal, D.; Mehta, M.; Srivastava, D. Influence of debris cover on terminus retreat and mass changes of chorabari glacier, garhwal region, central himalaya, india. J. Glaciol. 2013, 59, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Pellicciotti, F.; Stephan, C.; Miles, E.; Herreid, S.; Immerzeel, W.W.; Bolch, T. Mass-balance changes of the debris-covered glaciers in the langtang himal, nepal, from 1974 to 1999. J. Glaciol. 2015, 61, 373–386. [Google Scholar] [CrossRef] [Green Version]
- Rounce, D.R.; Hock, R.; McNabb, R.W.; Millan, R.; Sommer, C.; Braun, M.H.; Malz, P.; Maussion, F.; Mouginot, J.; Seehaus, T.C.; et al. Distributed globaldebris thickness estimates reveal debris significantly impacts glacier mass balance. Geophys. Res. Lett. 2021, 48, e2020GL091311. [Google Scholar] [CrossRef] [PubMed]
Coordinate | X (m) | Y (m) | Z (m) | Coordinate | X (m) | Y (m) | Z (m) |
---|---|---|---|---|---|---|---|
N35E070 | 0.04 | 0.40 | −0.32 | N36E077 | −1.75 | −2.89 | −2.76 |
N35E071 | −0.19 | −1.92 | 0.03 | N36E078 | −3.51 | −1.70 | 0.46 |
N35E072 | 0.13 | −0.10 | 1.54 | N36E079 | 3.42 | 4.31 | 2.49 |
N35E073 | −0.15 | 0.00 | 0.54 | N36E080 | 0.00 | −2.75 | −0.59 |
N35E074 | 4.75 | 1.09 | 1.64 | N37E070 | 0.24 | 1.69 | 2.94 |
N35E075 | −9.70 | −1.48 | 2.97 | N37E071 | 1.47 | 0.66 | 2.87 |
N35E076 | −0.77 | 1.97 | 5.82 | N37E072 | 0.74 | 0.44 | 1.00 |
N35E077 | −3.26 | −1.65 | −2.55 | N37E073 | 6.56 | 1.47 | −1.40 |
N35E078 | −3.15 | 1.77 | 2.11 | N37E074 | −0.06 | 1.22 | 2.25 |
N35E079 | 0.00 | 0.03 | −0.87 | N37E075 | −2.85 | −3.30 | −2.48 |
N35E080 | 2.57 | 1.73 | −2.90 | N37E076 | 6.99 | 2.57 | 5.27 |
N36E070 | 2.72 | −4.46 | 3.35 | N38E070 | 1.97 | 0.90 | 4.15 |
N36E071 | 0.02 | −0.20 | −0.97 | N38E071 | −0.01 | 0.80 | 2.42 |
N36E072 | −0.13 | −1.79 | 0.12 | N38E072 | 0.21 | 0.48 | 1.06 |
N36E073 | 0.00 | 0.05 | 0.34 | N38E073 | 1.68 | 1.90 | −0.46 |
N36E074 | 0.00 | 0.14 | 0.38 | N38E074 | −2.30 | −1.62 | −0.73 |
N36E075 | −0.56 | −0.97 | 2.05 | N38E075 | −7.60 | −4.78 | −4.17 |
N36E076 | −0.03 | −1.64 | −3.35 |
Study Area | Study Period | Mass Balance (m w.e. yr−1) | Data | Reference |
---|---|---|---|---|
Entire Karakoram | 2000–2021 | +0.02 ± 0.09 | SRTM, ICESat-2 | This study |
Western Karakoram | 2000–2021 | +0.04 ± 0.06 | SRTM, ICESat-2 | This study |
Central Karakoram | 2000–2021 | +0.02 ± 0.08 | SRTM, ICESat-2 | This study |
Eastern Karakoram | 2000–2021 | −0.06 ± 0.04 | SRTM, ICESat-2 | This study |
Entire Karakoram | 2000–2018 | −0.04 ± 0.04 | WordView/GeoEye DEMs, ASTER DEMs | [23] |
Entire Karakoram | 2000–2021 | −0.03 ± 0.12 | NASADEM, ICESat-2 | [46] |
Entire Karakoram | 2000–2016 | −0.03 ± 0.07 | ASTER | [14] |
Western Karakoram | 2000–2014 | −0.02 ± 0.06 | TanDEM-X, SRTM | [16] |
Central Karakoram | 2008–2016 | +0.12 ± 0.14 | SPOT, ASTER, SRTM | [47] |
Eastern Karakoram | 2008–2016 | −0.24 ± 0.12 | SPOT, ASTER, SRTM | [47] |
Eastern Karakoram | 2000–2014 | −0.10 ± 0.06 | TanDEM-X, SRTM | [16] |
GMB | T(Y) | T(S) | P(Y) | P(W) | MSNR(Y) | MSNR(S) | TCC(Y) | TCC(S) | |
---|---|---|---|---|---|---|---|---|---|
Karakoram | + | ↑ | ↓ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ |
WK | + | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ |
CK | + | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ |
EK | − | ↑ | ↑ | ↑ | ↓ | ↓ | ↓ | ↑ | ↑ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lhakpa, D.; Fan, Y.; Cai, Y. Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sens. 2022, 14, 6281. https://doi.org/10.3390/rs14246281
Lhakpa D, Fan Y, Cai Y. Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sensing. 2022; 14(24):6281. https://doi.org/10.3390/rs14246281
Chicago/Turabian StyleLhakpa, Drolma, Yubin Fan, and Yu Cai. 2022. "Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021" Remote Sensing 14, no. 24: 6281. https://doi.org/10.3390/rs14246281
APA StyleLhakpa, D., Fan, Y., & Cai, Y. (2022). Continuous Karakoram Glacier Anomaly and Its Response to Climate Change during 2000–2021. Remote Sensing, 14(24), 6281. https://doi.org/10.3390/rs14246281