An Automated and Improved Methodology to Retrieve Long-time Series of Evapotranspiration Based on Remote Sensing and Reanalysis Data
Abstract
:1. Introduction
- Provide and evaluate a novel endmember selection method;
- Compare the performance of different endmember selection methods under a wide range of land cover and climate conditions avoiding local calibration;
- Evaluate the validity of GLDAS reanalysis meteorological data in ET estimation.
2. Material and Methods
2.1. Study Area and Dataset
2.1.1. Climate Type Classification
2.1.2. Flux Tower Sites
2.1.3. Remote Sensing, Land Cover and Meteorological Inputs
2.2. Methods
2.2.1. SEBAL Algorithm: A Brief Description
2.2.2. Automated Endmember Selection
3. Results
3.1. Evaluation of Endmember Selection
3.2. Assessment of ET Estimates with the Different Endmember Selection Models
3.2.1. Overall Daily ET Evaluation
3.2.2. Evaluation of ET Estimation Results for Climate-Based (Global Aridity Index and Köppen Classification) and Land Cover-Based Trials
3.2.3. Evaluation of ET Estimation When Using Humid/Non-Humid Climate-Based Classifications
3.2.4. Overall Monthly ET Evaluation
4. Discussion
4.1. Daily ET Evaluation
4.2. Evaluation of Endmember Statistics
4.3. Land Cover-Specific ET Assessment
4.4. Land Cover-Climate ET Analysis
4.5. Humid Climate- and Landscape-Based ET Assessment
4.6. Monthly ET Evaluation
4.7. Comparison with Previous Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Enenkel, M.; See, L.; Bonifacio, R.; Boken, V.; Chaney, N.; Vinck, P.; You, L.; Dutra, E.; Anderson, M. Drought and food security—Improving decision-support via new technologies and innovative collaboration. Glob. Food Secur. 2015, 4, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N.; Bruinsma, J. World Agriculture towards 2030/2050: The 2012 Revision; Agricultural Development Economics Division, Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; pp. 1–147. [Google Scholar]
- Mokhtari, A.; Noory, H.; Vazifedoust, M.; Bahrami, M. Estimating net irrigation requirement of winter wheat using model- and satellite-based single and basal crop coefficients. Agric. Water Manag. 2018, 208, 95–106. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P.; Ortiz-Monasterio, J.I.; Benning, T.L. Remote sensing of regional crop production in the Yaqui Valley, Mexico: Estimates and uncertainties. Agric. Ecosyst. Environ. 2003, 94, 205–220. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, N.; Quackenbush, L.J.; Im, J.; Shaw, S.B. A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models. Remote. Sens. Environ. 2017, 196, 178–192. [Google Scholar] [CrossRef]
- Dhungel, R.; Allen, R.G.; Trezza, R.; Robison, C.W.J.M.A. Evapotranspiration between satellite overpasses: Methodology and case study in agricultural dominant semi-arid areas. Meteorol. Appl. 2016, 23, 714–730. [Google Scholar] [CrossRef] [Green Version]
- Eden, U. Drought Assessment by Evapotranspiration Mapping in Twente, the Netherlands. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2012. [Google Scholar]
- Bartholic, J.; Namken, L.; Wiegand, C.J.A.J. Aerial thermal scanner to determine temperatures of soils and of crop canopies differing in water stress 1. Agron. J. 1972, 64, 603–608. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Jiang, L.; Islam, S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations. Geophys. Res. Lett. 1999, 26, 2773–2776. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Almhab, A.A.; Busu, I. Estimation of Evapotranspiration with Modified SEBAL model using landsat-TM and NOAA-AVHRR images in arid mountains area. In Proceedings of the 2008 Second Asia International Conference on Modelling & Simulation (AMS), Kuala Lumpur, Malaysia, 13–15 May 2008; pp. 350–355. [Google Scholar]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Mkhwanazi, M.; Chávez, J.L.; Andales, A.A. SEBAL-A: A Remote Sensing ET Algorithm that Accounts for Advection with Limited Data. Part I: Development and Validation. Remote. Sens. 2015, 7, 15046–15067. [Google Scholar] [CrossRef] [Green Version]
- Elkatoury, A.; Alazba, A.A.; Abdelbary, A. Evaluating the performance of two SEB models for estimating ET based on satellite images in arid regions. Arab. J. Geosci. 2020, 13, 74. [Google Scholar] [CrossRef]
- Wagle, P.; Bhattarai, N.; Gowda, P.H.; Kakani, V.G. Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum. ISPRS J. Photogramm. Remote. Sens. 2017, 128, 192–203. [Google Scholar] [CrossRef] [Green Version]
- Al Zayed, I.S.; Elagib, N.A.; Ribbe, L.; Heinrich, J. Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agric. Water Manag. 2016, 177, 66–76. [Google Scholar] [CrossRef]
- Allen, R.; Irmak, A.; Trezza, R.; Hendrickx, J.M.H.; Bastiaanssen, W.; Kjaersgaard, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 2011, 25, 4011–4027. [Google Scholar] [CrossRef]
- Bhattarai, N.; Shaw, S.B.; Quackenbush, L.J.; Im, J.; Niraula, R. Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate. Int. J. Appl. Earth Obs. 2016, 49, 75–86. [Google Scholar] [CrossRef]
- Tasumi, M.; Trezza, R.; Allen, R.G.; Wright, J.L. Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S. Irrig. Drain. Syst. 2005, 19, 355–376. [Google Scholar] [CrossRef]
- Allen, R.G. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and drainage paper 56; FAO: Rome, Italy, 1998; Volume 56, pp. 60–64. [Google Scholar]
- Laipelt, L.; Ruhoff, A.L.; Fleischmann, A.S.; Kayser, R.H.B.; Kich, E.D.M.; da Rocha, H.R.; Neale, C.M.U. Assessment of an Automated Calibration of the SEBAL Algorithm to Estimate Dry-Season Surface-Energy Partitioning in a Forest–Savanna Transition in Brazil. Remote Sens. 2020, 12, 1108. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P.; Li, Z.-L. How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? J. Geophys. Res. Earth Surf. 2011, 116, 2011JD016542. [Google Scholar] [CrossRef]
- Fick, S.; Hijmans, R.J. WorldClim 2: Nouvelles surfaces climatiques de résolution spatiale de 1 km pour les zones terrestres mondiales. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An Overview of the Global Historical Climatology Network-Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Blankenau, P.A.; Kilic, A.; Allen, R. An evaluation of gridded weather data sets for the purpose of estimating reference evapotranspiration in the United States. Agric. Water Manag. 2020, 242, 106376. [Google Scholar] [CrossRef]
- Jaafar, H.; Mourad, R.; Schull, M. A global 30-m ET model (HSEB) using harmonized Landsat and Sentinel-2, MODIS and VIIRS: Comparison to ECOSTRESS ET and LST. Remote. Sens. Environ. 2022, 274, 112995. [Google Scholar] [CrossRef]
- Laipelt, L.; Kayser, R.H.B.; Fleischmann, A.S.; Ruhoff, A.; Bastiaanssen, W.; Erickson, T.A.; Melton, F. Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing. ISPRS J. Photogramm. Remote. Sens. 2021, 178, 81–96. [Google Scholar] [CrossRef]
- Jaafar, H.; Mourad, R. GYMEE: A Global Field-Scale Crop Yield and ET Mapper in Google Earth Engine Based on Landsat, Weather, and Soil Data. Remote. Sens. 2021, 13, 773. [Google Scholar] [CrossRef]
- Biggs, T.W.; Marshall, M.; Messina, A. Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison. Water Resour. Res. 2016, 52, 7311–7326. [Google Scholar] [CrossRef]
- Feng, L. Sensitivity Analysis of Hot/Cold Pixel Selection in SEBAL Model for ET Estimation; Virginia Tech: Blacksburg, VA, USA, 2015. [Google Scholar]
- Long, D.; Singh, V.P. A modified surface energy balance algorithm for land (M-SEBAL) based on a trapezoidal framework. Water Resour. Res. 2012, 48, 2011WR010607. [Google Scholar] [CrossRef]
- Allen, R.G.; Burnett, B.; Kramber, W.; Huntington, J.; Kjaersgaard, J.; Kilic, A.; Kelly, C.; Trezza, R. Automated Calibration of the METRIC-Landsat Evapotranspiration Process. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 563–576. [Google Scholar] [CrossRef]
- Olmedo, G.; Ortega-Farias, S.; Fonseca-Luengo, D.; de la Fuente-Saiz, D.; Peñailillo, F.F. Water: Actual Evapotranspiration with Energy Balance Models. R J. 2017, 8, 352–369. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Schauer, M.; Friedrichs, M.; Velpuri, N.M.; Singh, R.K. Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States. Remote. Sens. Environ. 2017, 202, 98–112. [Google Scholar] [CrossRef]
- Silva, A.M.; da Silva, R.M.; Santos, C.A.G. Automated surface energy balance algorithm for land (ASEBAL) based on automating endmember pixel selection for evapotranspiration calculation in MODIS orbital images. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 1–11. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. 2020, 238, 111034. [Google Scholar] [CrossRef]
- Saboori, M.; Mokhtari, A.; Afrasiabian, Y.; Daccache, A.; Alaghmand, S.; Mousivand, Y. Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions. Agric. Water Manag. 2021, 248, 106763. [Google Scholar] [CrossRef]
- Venancio, L.P.; Eugenio, F.C.; Filgueiras, R.; da França Cunha, F.; dos Argolo Santos, R.; Ribeiro, W.R.; Mantovani, E.C. Mapping within-field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. PloS ONE 2020, 15, e0235620. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Costa, J.; José, J.V.; Wolff, W.; de Oliveira, N.P.R.; Oliveira, R.C.; Ribeiro, N.L.; Coelho, R.D.; da Silva, T.J.A.; Bonfim-Silva, E.M.; Schlichting, A.F. Spatial variability quantification of maize water consumption based on Google EEflux tool. Agric. Water Manag. 2020, 232, 106037. [Google Scholar] [CrossRef]
- Foolad, F.; Blankenau, P.; Kilic, A.; Allen, R.G.; Huntington, J.L.; Erickson, T.A.; Ozturk, D.; Morton, C.G.; Ortega, S.; Ratcliffe, I.; et al. Comparison of the automatically calibrated Google Evapotranspiration Application—EEFlux and the manually calibrated METRIC application. arXiv 2018, arXiv:201807.0040.v1. [Google Scholar]
- Allen, R.G.; Morton, C.; Kamble, B.; Kilic, A.; Huntington, J.; Thau, D.; Gorelick, N.; Erickson, T.; Moore, R.; Trezza, R. EEFlux: A Landsat-based evapotranspiration mapping tool on the Google Earth Engine. In Proceedings of the 2015 ASABE/IA Irrigation Symposium: Emerging Technologies for Sustainable Irrigation—A Tribute to the Career of Terry Howell, Sr. Conference Proceedings, Long Beach, CA, USA, 10–12 November 2015; pp. 1–11. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Trabucco, A.; Zomer, R.J. Global aridity index and potential evapotranspiration (ET0) climate database v2. CGIAR Consort Spat Inf. 2018, 10, m9. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Zomer, R.J.; Trabucco, A.; Bossio, D.A.; Verchot, L.V. Climate change mitigation: A spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosyst. Environ. 2008, 126, 67–80. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D., Jr.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Hughes, M.J.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kayser, R.H.; Ruhoff, A.; Laipelt, L.; Kich, E.D.M.; Roberti, D.R.; Souza, V.D.A.; Rubert, G.C.D.; Collischonn, W.; Neale, C.M.U. Assessing geeSEBAL automated calibration and meteorological reanalysis uncertainties to estimate evapotranspiration in subtropical humid climates. Agric. For. Meteorol. 2022, 314, 108775. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. Terrestrial Hydrometeorology; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote. Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 v100. In ESA WorldCover Project 2020/Contains Modified Copernicus Sentinel Data (2020) Processed by ESA WorldCover Consortium; Zenodo: Genève, Switzerland, 2021. [Google Scholar] [CrossRef]
- Allen, R.; Tasumi, M.; Trezza, R.; Waters, R.; Bastiaanssen, W. Surface Energy Balance Algorithm for Land (SEBAL)–Advanced training and Users Manual. Kimberly Ida. Implement. 2002, 1, 98. [Google Scholar]
- Bastiaanssen, W. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M. Regionalization of Surface Flux Densities and Moisture Indicators in Composite Terrain: A Remote Sensing Approach under Clear Skies in Mediterranean Climates; Wageningen University and Research: Wageningen, The Netherlands, 1995. [Google Scholar]
- Wang, X.-G.; Wang, W.; Huang, D.; Yong, B.; Chen, X. Modifying SEBAL Model Based on the Trapezoidal Relationship between Land Surface Temperature and Vegetation Index for Actual Evapotranspiration Estimation. Remote Sens. 2014, 6, 5909–5937. [Google Scholar] [CrossRef] [Green Version]
- Businger, J.A.; Wyngaard, J.C.; Izumi, Y.; Bradley, E.F. Flux-profile rrelationship in the atmospheric surface layer. J. Atmos. Sci. 1971, 28, 181–189. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G.; Trezza, R. At-Surface Reflectance and Albedo from Satellite for Operational Calculation of Land Surface Energy Balance. J. Hydrol. Eng. 2008, 13, 51–63. [Google Scholar] [CrossRef]
- Artis, D.A.; Carnahan, W.H. Survey of emissivity variability in thermography of urban areas. Remote Sens. Environ. 1982, 12, 313–329. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Ji, L.; Zhang, L.; Wylie, B. Analysis of Dynamic Thresholds for the Normalized Difference Water Index. Photogramm. Eng. Remote Sens. 2009, 75, 1307–1317. [Google Scholar] [CrossRef]
- Tasumi, M. Application of the SEBAL methodology for estimating consumptive use of water and stream flow depletion in the Bear River Basin of Idaho through remote sensing. Append. C A Step By Step Guide Run. SEBAL 2000. [Google Scholar]
- Deng, C.; Wu, C. BCI: A biophysical composition index for remote sensing of urban environments. Remote Sens. Environ. 2012, 127, 247–259. [Google Scholar] [CrossRef]
- Fujimaki, H.; Shiozawa, S.; Inoue, M. Effect of salty crust on soil albedo. Agric. For. Meteorol. 2003, 118, 125–135. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. Land surface temperature and normalized difference vegetation index relationship: A seasonal study on a tropical city. SN Appl. Sci. 2020, 2, 1661. [Google Scholar] [CrossRef]
- Kumar, D.; Shekhar, S. Statistical analysis of land surface temperature–vegetation indexes relationship through thermal remote sensing. Ecotoxicol. Environ. Saf. 2015, 121, 39–44. [Google Scholar] [CrossRef]
- Yue, W.; Xu, J.; Tan, W.; Xu, L. The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7 ETM+ data. Int. J. Remote. Sens. 2007, 28, 3205–3226. [Google Scholar] [CrossRef]
- Sun, D.; Kafatos, M. Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett. 2007, 34, 2007GL031485. [Google Scholar] [CrossRef] [Green Version]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Yapo, P.O.; Gupta, H.V.; Sorooshian, S. Automatic calibration of conceptual rainfall-runoff models: Sensitivity to calibration data. J. Hydrol. 1996, 181, 23–48. [Google Scholar] [CrossRef]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Melton, F.S.; Huntington, J.; Grimm, R.; Herring, J.; Hall, M.; Rollison, D.; Erickson, T.; Allen, R.; Anderson, M.; Fisher, J.B.; et al. Openet: Filling a critical data gap in water management for the western united states. JAWRA J. Am. Water Resour. Assoc. 2021. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Qu, Y.; Zhuang, Q. Modeling leaf area index in North America using a process-based terrestrial ecosystem model. Ecosphere 2018, 9, e02046. [Google Scholar] [CrossRef] [Green Version]
- Levis, S.; Bonan, G.B.; Kluzek, E.; Thornton, P.; Jones, A.; Sacks, W.J.; Kucharik, C. Interactive Crop Management in the Community Earth System Model (CESM1): Seasonal Influences on Land–Atmosphere Fluxes. J. Clim. 2012, 25, 4839–4859. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, H.; Mourad, R.; Kustas, W.; Anderson, M. A Global Implementation of Single-and Dual-Source Surface Energy Balance Models for Estimating Actual Evapotranspiration at 30-m Resolution using Google Earth Engine. Water Resour. Res. 2022, 58, e2022WR032800. [Google Scholar] [CrossRef]
Station | Land Cover | Climate Köppen/Aridity Index | Average Temperature (°C) | Annual Precipitation (mm) | Latitude | Longitude | Elevation | Time Interval | Number of Data |
---|---|---|---|---|---|---|---|---|---|
US-ARM | CRO | Cfa/Sub-humid | 14.76 | 843 | 36.6058 | −97.4888 | 314 | 2006-19 | 141 |
US-BI1 | CRO | Csa/Semi-arid | 16 | 338 | 38.0992 | −121.502 | −2.7 | 2016-21 | 134 |
US-Br1 | CRO | Dfa/Humid | 8.95 | 842.33 | 41.9749 | −93.6906 | 313 | 2005-11 | 90 |
US-IB1 | CRO | Dfa/Humid | 9.18 | 929.23 | 41.8593 | −88.2227 | 226.5 | 2005-18 | 103 |
US-NE2 | CRO | Dfa/Sub-humid | 10.08 | 788.89 | 41.1649 | −96.4701 | 362 | 2006-19 | 87 |
US-RO1 | CRO | Dfa/Humid | 6.4 | 879 | 44.7143 | −93.0898 | 290 | 2004-17 | 115 |
US-TW3 | CRO | Csa/Semi-arid | 15.6 | 421 | 38.1152 | −121.647 | −4 | 2013-18 | 92 |
US-WJS | SAV | Bsk/Arid | 15.2 | 361 | 34.4255 | −105.862 | 1931 | 2007-19 | 175 |
CA-Ca3 | ENF | Cfb/Humid | 9.94 | 1676 | 49.5346 | −124.9 | 164 | 2012-18 | 71 |
CA-GRO | MF | Dfb/Humid | 1.3 | 831 | 48.2167 | −82.1556 | 340 | 2004-12 | 49 |
CA-OAS | DBF | Dfc/Semi-arid | 0.34 | 428.53 | 53.6289 | −106.198 | 530 | 2002-10 | 74 |
US-NC2 | ENF | Cfa/Humid | 16.6 | 1320 | 35.803 | −76.6685 | 5 | 2005-20 | 90 |
US-TON | WSA | Csa/Semi-arid | 15.8 | 559 | 38.4309 | −120.966 | 177 | 2008-18 | 182 |
US-UMB | DBF | Dfb/Humid | 5.83 | 803 | 45.5598 | −84.7138 | 234 | 2007-18 | 72 |
US-VCM | ENF | Dfb/Sub-humid | 6.4 | 646 | 35.8884 | −106.5321 | 3030 | 2014-20 | 109 |
US-CMW | DBF | Bsh/Arid | 17 | 288 | 31.6637 | −110.1777 | 1199 | 2014-18 | 97 |
CA-LET | GRA | Dfb/Semi-arid | 5.36 | 398.4 | 49.7093 | −112.94 | 960 | 2000-7 | 124 |
CA-MR3 | GRA | Dfc/Semi-arid | - | 325 | 50.8671 | −111.905 | 712 | 2012-16 | 30 |
US-SRG | GRA | Bsk/Arid | 17 | 420 | 31.7894 | −110.828 | 1291 | 2008-18 | 139 |
US-KON | GRA | Cfa/Sub-humid | 12.77 | 867 | 39.0824 | −96.5603 | 417 | 2014-18 | 43 |
US-KFS | GRA | Cfa/Humid | 12 | 1014 | 39.0561 | −95.1907 | 310 | 2013-18 | 34 |
US-PHM | WET | Dfa/Humid | 7.2 | 1262 | 42.7423 | −70.8301 | 1262 | 2013-20 | 44 |
US-TW1 | WET | Csa/Semi-arid | 15.5 | 421 | 38.1074 | −121.647 | −5 | 2014-20 | 175 |
NDVI_WF | NDVI_WOF | NDVI_ALLEN | LST_WF | LST_WOF | LST_ALLEN | ||
---|---|---|---|---|---|---|---|
Cold pixels | Mean | 0.76 | 0.77 | 0.91 | 287.91 | 285.68 | 288.83 |
STD | 0.04 | 0.03 | 0.03 | 3.18 | 3.64 | 3.23 | |
Hot pixels | Mean | 0.17 | 0.17 | 0.06 | 308.77 | 310.72 | 306.94 |
STD | 0.01 | 0.01 | 0.01 | 6.65 | 5.82 | 5.35 |
Crop Flux Stations (N: 7–762) | Non-Crop Flux Stations (N: 16–1508) | All Flux Stations (N: 23–2270) | |||||||
---|---|---|---|---|---|---|---|---|---|
WF | WOF | Allen | WF | WOF | Allen | WF | WOF | Allen | |
RMSE (mm·day−1) | 0.91 | 1.02 | 1.10 | 1.59 | 1.60 | 1.67 | 1.38 | 1.43 | 1.50 |
R2 | 0.71 | 0.63 | 0.68 | 0.43 | 0.41 | 0.39 | 0.51 | 0.48 | 0.48 |
PBias (%) | 2.46 | −1.96 | 5.53 | 61 | 63 | 50 | 42 | 43 | 36 |
Experiment | Metric | Scenario with the Best Performance (Climate or Land Cover) | Scenario with the Worst Performance (Climate or Land Cover) |
---|---|---|---|
RMSE | Allen (arid) | Allen (humid) | |
Aridity index climate-based trials | R2 | Allen (sub-humid) | Allen (arid) |
PBias | Allen (semi-arid) | WOF (arid) | |
RMSE | Allen (Bsk, Bsh) + WF(Dfa) | Allen (Dfb) + WF (Cfb) | |
Köppen climate-based trials | R2 | Allen (Cfb) + WF (Dfa) | Allen (Dfc) |
PBias | Allen (Dfc) + WF (Dfa) | WOF and WF (Cfb) | |
RMSE | WF (crop) | Allen (forest) | |
Land cover-based trials | R2 | WF (crop) | Allen and WOF (short veg.) |
PBias | WF (crop) | WOF (forest) |
RMSE (mm·day−1) | R2 | PBias (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Climate Zones | Land Cover-Based Towers | WF | WOF | Allen | WF | WOF | Allen | WF | WOF | Allen |
Humid | Crop (N: 3–308) | 0.94 | 1.16 | 1.27 | 0.71 | 0.54 | 0.64 | 8 | 1 | 26 |
Non-crop (N: 6–360) | 1.86 | 1.89 | 2.15 | 0.41 | 0.41 | 0.38 | 61 | 67 | 78 | |
Non-humid | Crop (N: 4–454) | 0.90 | 0.92 | 0.98 | 0.71 | 0.70 | 0.71 | −2 | −5 | −10 |
Non-crop (N: 10–1200) | 1.43 | 1.43 | 1.39 | 0.44 | 0.41 | 0.40 | 60 | 60 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saboori, M.; Mousivand, Y.; Cristóbal, J.; Shah-Hosseini, R.; Mokhtari, A. An Automated and Improved Methodology to Retrieve Long-time Series of Evapotranspiration Based on Remote Sensing and Reanalysis Data. Remote Sens. 2022, 14, 6253. https://doi.org/10.3390/rs14246253
Saboori M, Mousivand Y, Cristóbal J, Shah-Hosseini R, Mokhtari A. An Automated and Improved Methodology to Retrieve Long-time Series of Evapotranspiration Based on Remote Sensing and Reanalysis Data. Remote Sensing. 2022; 14(24):6253. https://doi.org/10.3390/rs14246253
Chicago/Turabian StyleSaboori, Mojtaba, Yousef Mousivand, Jordi Cristóbal, Reza Shah-Hosseini, and Ali Mokhtari. 2022. "An Automated and Improved Methodology to Retrieve Long-time Series of Evapotranspiration Based on Remote Sensing and Reanalysis Data" Remote Sensing 14, no. 24: 6253. https://doi.org/10.3390/rs14246253
APA StyleSaboori, M., Mousivand, Y., Cristóbal, J., Shah-Hosseini, R., & Mokhtari, A. (2022). An Automated and Improved Methodology to Retrieve Long-time Series of Evapotranspiration Based on Remote Sensing and Reanalysis Data. Remote Sensing, 14(24), 6253. https://doi.org/10.3390/rs14246253