Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Dataset and Digital Image Processing
2.3. Mid-Resolution Classification
2.4. High-Resolution Image Classification
2.5. High-Resolution Classification Accuracy
2.6. Drone Imagery Acquisition and Processing
2.7. 3D Point Cloud
2.8. Digital Models
3. Results
3.1. Accuracy Assessment of High-Resolution Multitemporal Classification
3.1.1. Level 1 Classification
3.1.2. Mangrove Species (Level 3) Classification
3.2. Mid and High-Resolution Vegetation Mapping
3.3. Vegetation Height and Topographic Analysis
4. Discussion
4.1. Mid-Resolution Dataset Analysis
4.2. High-Resolution Dataset Analysis
4.3. Topographic Data Considerations
4.4. Effects of Road Construction on Mangrove Dynamics
4.5. Climatic Factors and Sea-Level Rise Affecting Mangrove Regeneration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodroffe, C.D.; Grindrod, J. Mangrove Biogeography: The Role of Quaternary Environmental and Sea-Level Change. J. Biogeogr. 1991, 18, 479–492. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Response of Tide-dominated Mangrove Shorelines in Northern Australia to Anticipated Sea-Level Rise. Earth Surf. Process. Landf. 1995, 20, 65–85. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010; ISBN 9781844076574. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Twilley, R.R.; Day, J.W. Mangrove Wetlands. In Estuarine Ecology, 2nd ed.; Day, J.W., Jr., Kemp, W.M., Yáñez-Arancibia, A., Crump, B.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 165–202. ISBN 9780471755678. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-471-69967-5. [Google Scholar]
- Food and Agriculture Organization (FAO). The World’s Mangroves 1980–2005. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; FAO: Rome, Italy, 2007; ISBN 978-92-5-105856-5.
- Mitsch, W.J.; Mander, Ü. Wetlands and Carbon Revisited. Ecol. Eng. 2018, 114, 1–6. [Google Scholar] [CrossRef]
- Soper, F.M.; MacKenzie, R.A.; Sharma, S.; Cole, T.G.; Litton, C.M.; Sparks, J.P. Non-Native Mangroves Support Carbon Storage, Sediment Carbon Burial, and Accretion of Coastal Ecosystems. Glob. Chang. Biol. 2019, 25, 4315–4326. [Google Scholar] [CrossRef]
- Doyle, T.W.; Girod, G.F.; Books, M.A. Modeling Mangrove Forest Migration along the Southwest Coast of Florida under Climate Change. In Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region; Ning, Z., Turner, R.E., Doyle, T.W., Abdollahi, K., Thornton, A., Reyes, E., Justic, D., Swenson, E., Khairy, W., Liu, K., Eds.; GCRCC: Baton Rouge, LA, USA, 2003; pp. 211–222. [Google Scholar]
- Kirwan, M.L.; Murray, A.B. A Coupled Geomorphic and Ecological Model of Tidal Marsh Evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 6118–6122. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Pessenda, L.C.R.; Behling, H.; de Fátima Rossetti, D.; França, M.C.; Guimarães, J.T.F.; Friaes, Y.; Smith, C.B. Holocene Palaeoenvironmental History of the Amazonian Mangrove Belt. Quat. Sci. Rev. 2012, 55, 50–58. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and Drivers of Global Mangrove Forest Change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef]
- Beselly, S.M.; van der Wegen, M.; Grueters, U.; Reyns, J.; Dijkstra, J.; Roelvink, D. Eleven Years of Mangrove–Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating Uav and Satellite Imagery. Remote Sens. 2021, 13, 1084. [Google Scholar] [CrossRef]
- Hsu, A.J.; Kumagai, J.; Favoretto, F.; Dorian, J.; Martinez, B.G.; Aburto-Oropeza, O. Driven by Drones: Improving Mangrove Extent Maps Using High-Resolution Remote Sensing. Remote Sens. 2020, 12, 3986. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural Characterisation of Mangrove Forests Achieved through Combining Multiple Sources of Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic Mangrove Species Mapping with Multiple-Source Remote-Sensing Datasets Using Label Distribution Learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Sakti, A.D.; Fauzi, A.I.; Wilwatikta, F.N.; Rajagukguk, Y.S.; Sudhana, S.A.; Yayusman, L.F.; Syahid, L.N.; Sritarapipat, T.; Principe, J.A.; Quynh Trang, N.T.; et al. Multi-Source Remote Sensing Data Product Analysis: Investigating Anthropogenic and Naturogenic Impacts on Mangroves in Southeast Asia. Remote Sens. 2020, 12, 2720. [Google Scholar] [CrossRef]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring Mangrove Forests: Are We Taking Full Advantage of Technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of Panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Lin, G.; Lin, H. A Small-Patched Convolutional Neural Network for Mangrove Mapping at Species Level Using High-Resolution Remote-Sensing Image. Ann. GIS 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Figueiredo, B.L.; Oliveira, N.N.; Fontes, N.A.; França, M.C.; Pessenda, L.C.R.; de Souza, A.V.; Macario, K.; Giannini, P.C.F.; Bendassolli, J.A.; et al. Impacts of Holocene and Modern Sea-Level Changes on Estuarine Mangroves from Northeastern Brazil. Earth Surf. Process. Landforms. 2020, 45, 375–392. [Google Scholar] [CrossRef]
- Bozi, B.S.; Figueiredo, B.L.; Rodrigues, E.; Cohen, M.C.L.; Pessenda, L.C.R.; Alves, E.E.N.; de Souza, A.V.; Bendassolli, J.A.; Macario, K.; Azevedo, P.; et al. Impacts of Sea-Level Changes on Mangroves from Southeastern Brazil during the Holocene and Anthropocene Using a Multi-Proxy Approach. Geomorphology 2021, 390, 107860. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Camargo, P.M.P.; Pessenda, L.C.R.; Lorente, F.L.; De Souza, A.V.; Corrêa, J.A.M.; Bendassolli, J.; Dietz, M. Effects of the Middle Holocene High Sea-Level Stand and Climate on Amazonian Mangroves. J. Quat. Sci. 2021, 36, 1013–1027. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Rodrigues, E.; Rocha, D.O.S.; Freitas, J.; Fontes, N.A.; Pessenda, L.C.R.; de Souza, A.V.; Gomes, V.L.P.; França, M.C.; Bonotto, D.M.; et al. Southward Migration of the Austral Limit of Mangroves in South America. Catena 2020, 195, 104775. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing Mangrove Forests from the Sky: Forest Inventory Using Field Data and Unmanned Aerial Vehicle (UAV) Imagery in the Matang Mangrove Forest Reserve, Peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Paradella, W.R. Use of RS1 Fine Mode and Landsat-5 TM PCA for Geomorphological Mapping in a Microtidal Mangrove Coast in the Amazon Region. Can. J. Remote. Sens. 2005, 31, 214–224. [Google Scholar] [CrossRef]
- Nascimento, W.R.; Souza-Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping Changes in the Largest Continuous Amazonian Mangrove Belt Using Object-Based Classification of Multisensor Satellite Imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; de Souza, A.V.; Rossetti, D.F.; Pessenda, L.C.R.; França, M.C. Decadal-Scale Dynamics of an Amazonian Mangrove Caused by Climate and Sea Level Changes: Inferences from Spatial–Temporal Analysis and Digital Elevation Models. Earth Surf. Process. Landfo 2018, 43, 2876–2888. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Lara, R.J. Temporal Changes of Mangrove Vegetation Boundaries in Amazonia: Application of GIS and Remote Sensing Techniques. Wetl. Ecol. Manag. 2003, 11, 223–231. [Google Scholar] [CrossRef]
- Lara, R.J.; Cohen, M.C.L. Sediment Porewater Salinity, Inundation Frequency and Mangrove Vegetation Height in Bragança, North Brazil: An Ecohydrology-Based Empirical Model. Wetl. Ecol. Manag. 2006, 14, 349–358. [Google Scholar] [CrossRef]
- Cunha-Lignon, M.; Menghini, R.P.; Santos, L.C.M.; Niemeyer-Dinóla, C.; Schaeffer-Novelli, Y. Estudos de Caso Nos Manguezais Do Estado de São Paulo (Brasil): Aplicação de Ferramentas Com Diferentes Escalas Espaço-Temporais. Rev. Gestão Costeira Integr. 2009, 9, 79–91. [Google Scholar] [CrossRef]
- Villate Daza, D.A.; Moreno, H.S.; Portz, L.; Manzolli, R.P.; Bolívar-Anillo, H.J.; Anfuso, G. Mangrove Forests Evolution and Threats in the Caribbean Sea of Colombia. Water 2020, 12, 1113. [Google Scholar] [CrossRef]
- Patel, B.K.; Vachrajani, K.D. Pollution Status in Mangrove Ecosystem of Mahi and Dadhar River Estuaries. In National Conference on Biodiversity: Status and Challenges in Conservation—‘FAVEO’; 2013; pp. 163–172. Available online: http://www.vpmthane.org/sci/faveo/r27.pdf (accessed on 27 September 2022).
- Din, N.; Ngo-Massou, V.M.; Essomè-Koum, G.L.; Ndema-Nsombo, E.; Kottè-Mapoko, E.; Nyamsi-Moussian, L. Impact of Urbanization on the Evolution of Mangrove Ecosystems in the Wouri River Estuary (Douala Cameroon). In Coastal Wetlands: Alteration and Remediation; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Swizerland, 2017; Volume 21, pp. 81–131. ISBN 978-3-319-56179-0. [Google Scholar]
- Fernandes, M.E.B.; Fernandes, J.S.; Muriel-Cunha, J.; Sedovim, W.R.; Gomes, I.A.; Santana, D.S.; Sampaio, D.S.; Andrade, F.A.G.; Oliveira, F.P.; Brabo, L.B.; et al. Efeito Da Construção Da Rodovia PA-458 Sobre as Florestas de Mangue da Península Bragantina, Bragança, Pará, Brasil. UAKARI 2007, 3, 55–63. [Google Scholar] [CrossRef][Green Version]
- Oliveira, M.V.C.; Henrique, M.C. No Meio Do Caminho Havia Um Mangue: Impactos Socioambientais da Estrada Bragança-Ajuruteua, Pará. História, Ciências, Saúde-Manguinhos 2018, 25, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Lara, R.; Szlafsztein, C.; Cohen, M.C.L.; Berger, U.; Glaser, M. Implications of Mangrove Dynamics for Private Land Use in Bragança, North Brazil: A Case Study. J. Coast. Conserv. 2002, 8, 97–102. [Google Scholar] [CrossRef]
- Souza Filho, P.W.M.; Paradella, W.R. Recognition of the Main Geobotanical Features along the Bragança Mangrove Coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 Data. Wetl. Ecol. Manag. 2002, 10, 123–132. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Behling, H.; Lara, R.J.; Smith, C.B.; Matos, H.R.S.; Vedel, V. Impact of Sea-Level and Climatic Changes on the Amazon Coastal Wetlands during the Late Holocene. Veg. Hist. Archaeobot. 2009, 18, 425–439. [Google Scholar] [CrossRef]
- Asp, N.E.; Schettini, C.A.F.; Siegle, E.; da Silva, M.S.; de Brito, R.N.R. The Dynamics of a Frictionally-Dominated Amazonian Estuary. Braz. J. Oceanogr. 2012, 60, 391–403. [Google Scholar] [CrossRef]
- Asp, N.E.; Amorim de Freitas, P.T.; Gomes, V.J.C.; Gomes, J.D. Hydrodynamic Overview and Seasonal Variation of Estuaries at the Eastern Sector of the Amazonian Coast. J. Coast. Res. 2013, 165, 1092–1097. [Google Scholar] [CrossRef]
- Da Cruz, C.C.; Mendoza, U.N.; Queiroz, J.B.; Berrêdo, J.F.; Da Costa Neto, S.V.; Lara, R.J. Distribution of Mangrove Vegetation along Inundation, Phosphorus, and Salinity Gradients on the Bragança Peninsula in Northern Brazil. Plant Soil 2013, 370, 393–406. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree-Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bartolo, R. Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef]
- Ye, S.; Pontius, R.G.; Rakshit, R. A Review of Accuracy Assessment for Object-Based Image Analysis: From per-Pixel to per-Polygon Approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- ESRI Create Accuracy Assessment Points (Image Analyst). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/create-accuracy-assessment-points.htm (accessed on 8 November 2021).
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429052729. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Kongwongjan, J.; Suwanprasit, C.; Thongchumnum, P. Comparison of Vegetation Indices for Mangrove Mapping Using THEOS Data. Proc. Asia-Pac. Adv. Netw. 2012, 33, 56–64. [Google Scholar] [CrossRef][Green Version]
- Zulfa, A.W.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Rhyma, P.P.; Fitrianto, A. Spectral Signature Analysis to Determine Mangrove Species Delineation Structured by Anthropogenic Effects. Ecol. Indic. 2021, 130, 108148. [Google Scholar] [CrossRef]
- Pop, A.; Zoran, M.; Braescu, C.L.; Necsoiu, M.; Serban, F.; Petrica, A. Spectral Reflectance Signification in Satellite Imagery. In Photon Transport in Highly Scattering Tissue, Proceedings of the International Symposium on Biomedical Optics Europe ‘94, Lille, France, 6–10 September 1994; SPIE: Bellingham, WA, USA, 1995; Volume 2326, pp. 436–447. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Mahmoudi, B.; Zenner, E.K. An Analysis of the Relationship between Drought Events and Mangrove Changes Along the Northern Coasts of the Persian Gulf and Oman Sea. Estuar. Coast. Shelf Sci. 2017, 199, 141–151. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Meteorologia INMET. Available online: https://portal.inmet.gov.br/ (accessed on 20 June 2021).
- Golden Gate Weather Services GGWS. Available online: http://ggweather.com/enso/oni.htm (accessed on 15 June 2021).
- Rebelo-Mochel, F.; Ponzoni, F.J. Spectral Characterization of Mangrove Leaves in the Brazilian Amazonian Coast: Turiaçu Bay, Maranhão State. An. Acad. Bras. Cienc. 2007, 79, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Lamers, L.P.M.; Govers, L.L.; Janssen, I.C.J.M.; Geurts, J.J.M.; Van der Welle, M.E.W.; Van Katwijk, M.M.; Van der Heid, T.; Roelofs, J.G.M.; Smolders, A.J.P. Sulfide as a Soil Phytotoxin-a Review. Front. Plant Sci. 2013, 4, 268. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The Role of Sediment Microorganisms in the Productivity, Conservation, and Rehabilitation of Mangrove Ecosystems: An Overview. Biol. Fertil. Soils 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity Tolerance in Halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.; Stanton, D.E.; Schmitz, N.; Farquhar, G.D.; Ball, M.C. Growth Responses of the Mangrove Avicennia Marina to Salinity: Development and Function of Shoot Hydraulic Systems Require Saline Conditions. Ann. Bot. 2015, 115, 397–407. [Google Scholar] [CrossRef]
- Ball, M.C. Salinity Tolerance in the Mangroves Aegiceras Corniculatum and Avicennia Marina. I. Water Use in Relation to Growth, Carbon Partitioning, and Salt Balance. Aust. J. Plant Physiol. 1988, 15, 447–464. [Google Scholar] [CrossRef]
- Zhao, X.; Rivera-Monroy, V.H.; Wang, H.; Xue, Z.G.; Tsai, C.F.; Willson, C.S.; Castañeda-Moya, E.; Twilley, R.R. Modeling Soil Porewater Salinity in Mangrove Forests (Everglades, Florida, USA) Impacted by Hydrological Restoration and a Warming Climate. Ecol. Modell. 2020, 436, 109292. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt Tolerance Mechanisms in Mangroves: A Review. Trees-Struct. Funct. 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Albuquerque, A.G.B.M.; Ferreira, T.O.; Cabral, R.L.; Nóbrega, G.N.; Romero, R.E.; Meireles, A.J.D.A.; Otero, X.L. Hypersaline Tidal Flats (Apicum Ecosystems): The Weak Link in the Tropical Wetlands Chain. Environ. Rev. 2014, 22, 99–109. [Google Scholar] [CrossRef]
- Coffin, A.W.; Ouren, D.S.; Bettez, N.D.; Borda-de-Água, L.; Daniels, A.E.; Grilo, C.; Jaeger, J.A.G.; Navarro, L.M.; Preisler, H.K.; Rauschert, E.S.J. The Ecology of Rural Roads: Effects, Management and Research. Issues Ecol. 2021, 1–35. [Google Scholar]
- Sherman, R.E.; Fahey, T.J.; Martinez, P. Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems 2003, 6, 384–398. [Google Scholar] [CrossRef]
- Madrid, E.N.; Armitage, A.R.; Lopez-Portillo, J. Avicennia Germinans (Black Mangrove) Vessel Architecture Is Linked to Chilling and Salinity Tolerance in the Gulf of Mexico. Front. Plant Sci. 2014, 5, 503. [Google Scholar] [CrossRef]
- Deljouei, A.; Sadeghi, S.M.M.; Abdi, E.; Bernhardt-Römermann, M.; Pascoe, E.L.; Marcantonio, M. The Impact of Road Disturbance on Vegetation and Soil Properties in a Beech Stand, Hyrcanian Forest. Eur. J. For. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.A. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef]
- Anthony, E.; Goichot, M. Sediment Flow in the Context of Mangrove Restoration and Conservation; World Wide Fund for Nature: Gland, Switzerland, 2020; ISBN 288085-0968. Available online: http://www.mangrovealliance.org/wp-content/uploads/2020/01/WWF-MCR-Sediment-Flow-in-the-Context-of-Mangrove-Restoration-and-Conservation-v6.5-WEB.pdf (accessed on 27 September 2022).
- McLachlan, R.L.; Ogston, A.S.; Asp, N.E.; Fricke, A.T.; Nittrouer, C.A.; Gomes, V.J.C. Impacts of Tidal-Channel Connectivity on Transport Asymmetry and Sediment Exchange with Mangrove Forests. Estuar. Coast. Shelf Sci. 2020, 233, 106524. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, Q.; Wang, C.; Yang, J.J.; Deng, L. Effects of road construction on regional vegetation types. J. Appl. Ecol. 2013, 24, 1192–1198. [Google Scholar]
- Feng, S.; Liu, S.; Jing, L.; Zhu, Y.; Yan, W.; Jiang, B.; Liu, M.; Lu, W.; Ning, Y.; Wang, Z.; et al. Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach. Remote Sens. 2021, 13, 1340. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Souza Filho, P.W.M.; Lara, R.J.; Behling, H.; Angulo, R.J. A Model of Holocene Mangrove Development and Relative Sea-Level Changes on the Bragança Peninsula (Northern Brazil). Wetl. Ecol. Manag. 2005, 13, 433–443. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Lessa, G.C.; Cohen, M.C.L.; Costa, F.R.; Lara, R.J. The Subsiding Macrotidal Barrier Estuarine System of the Eastern Amazon Coast, Northern Brazil. In Geology of Brazilian Coastal Barriers; Dillenburg, S.F., Hesp, P.A., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Lindsey, R. Climate Change: Global Sea Level. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 1 November 2021).
Pléiades-1 and RapidEye | Google Earth | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bands (B): | B1: Blue, B2: Green, B3: Red, B4: NIR, B5: NDWI, B6: NDVI | B1: Blue, B2: Green, B3: Red | |||||||
Level | Classes | Scale | Shape | Comp | Weights | Scale | Shape | Comp | Weights |
1 | Clouds, Construction land and others, Degraded mangrove, Vegetation, Water | 100 | 0.2 | 0.8 | B1: 1, B2: 1, B3: 1, B4: 4, B5: 1, B6: 1 | 100 | 0.2 | 0.5 | B1: 1, B2: 1, B3: 1 |
2 | Mangrove, non-mangrove | 20 | 0.2 | 0.6 | B1: 1, B2: 1, B3: 1, B4: 4, B5: 1. B6: 2 | 20 | 0.2 | 0.5 | B1: 1, B2: 4, B3: 1 |
3 | Avicennia, Rhizophora |
Drone Type | Focal Length (mm) | Sensor Width (mm) | Image Width (Pixels) | Frontal Overlap | Lateral Overlap | Ground Camera Angle |
---|---|---|---|---|---|---|
Phantom 4 | 3.61 | 6.17 | 4096 | 85% | 75% | 90° |
Mid-Resolution Dataset | High-Resolution Dataset | ||||
---|---|---|---|---|---|
Sensor | Date | Area (ha) | Sensor | Date | Area (ha) |
LT5 MSS & TM | 27/8/1986 | 429.08 | Google Earth (Quick bird) | 21/9/2003 | 284.55 |
LT5 MSS & TM | 1/10/1993 | 349.03 | |||
LT7 ETM+ | 7/8/1999 | 386.95 | |||
LT5 MSS & TM | 3/9/2006 | 269.65 | |||
LT5 MSS & TM | 26/6/2010 | 211.95 | PLEIADES-1 | 8/8/2015 | 151.60 |
LT8 OLI & TIRS | 17/12/2015 | 223.08 | 13/9/2017 | 199.06 | |
ST2 MSI | 5/9/2019 | 181.12 | 13/7/2019 | 72.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenas, S.M.M.; Cohen, M.C.L.; Ruiz, D.P.C.; Souza, A.V.; Gomez-Neita, J.S.; Pessenda, L.C.R.; Culligan, N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sens. 2022, 14, 6197. https://doi.org/10.3390/rs14246197
Cardenas SMM, Cohen MCL, Ruiz DPC, Souza AV, Gomez-Neita JS, Pessenda LCR, Culligan N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sensing. 2022; 14(24):6197. https://doi.org/10.3390/rs14246197
Chicago/Turabian StyleCardenas, Sergio M. M., Marcelo C. L. Cohen, Diana P. C. Ruiz, Adriana V. Souza, Juan. S. Gomez-Neita, Luiz C. R. Pessenda, and Nicholas Culligan. 2022. "Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces" Remote Sensing 14, no. 24: 6197. https://doi.org/10.3390/rs14246197
APA StyleCardenas, S. M. M., Cohen, M. C. L., Ruiz, D. P. C., Souza, A. V., Gomez-Neita, J. S., Pessenda, L. C. R., & Culligan, N. (2022). Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sensing, 14(24), 6197. https://doi.org/10.3390/rs14246197