Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Dataset and Digital Image Processing
2.3. Mid-Resolution Classification
2.4. High-Resolution Image Classification
2.5. High-Resolution Classification Accuracy
2.6. Drone Imagery Acquisition and Processing
2.7. 3D Point Cloud
2.8. Digital Models
3. Results
3.1. Accuracy Assessment of High-Resolution Multitemporal Classification
3.1.1. Level 1 Classification
3.1.2. Mangrove Species (Level 3) Classification
3.2. Mid and High-Resolution Vegetation Mapping
3.3. Vegetation Height and Topographic Analysis
4. Discussion
4.1. Mid-Resolution Dataset Analysis
4.2. High-Resolution Dataset Analysis
4.3. Topographic Data Considerations
4.4. Effects of Road Construction on Mangrove Dynamics
4.5. Climatic Factors and Sea-Level Rise Affecting Mangrove Regeneration
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodroffe, C.D.; Grindrod, J. Mangrove Biogeography: The Role of Quaternary Environmental and Sea-Level Change. J. Biogeogr. 1991, 18, 479–492. [Google Scholar] [CrossRef]
- Woodroffe, C.D. Response of Tide-dominated Mangrove Shorelines in Northern Australia to Anticipated Sea-Level Rise. Earth Surf. Process. Landf. 1995, 20, 65–85. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: London, UK, 2010; ISBN 9781844076574. [Google Scholar]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and Distribution of Mangrove Forests of the World Using Earth Observation Satellite Data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Twilley, R.R.; Day, J.W. Mangrove Wetlands. In Estuarine Ecology, 2nd ed.; Day, J.W., Jr., Kemp, W.M., Yáñez-Arancibia, A., Crump, B.C., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 165–202. ISBN 9780471755678. [Google Scholar]
- Mitsch, W.J.; Gosselink, J.G. Wetlands, 4th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2007; ISBN 978-0-471-69967-5. [Google Scholar]
- Food and Agriculture Organization (FAO). The World’s Mangroves 1980–2005. A Thematic Study Prepared in the Framework of the Global Forest Resources Assessment 2005; FAO: Rome, Italy, 2007; ISBN 978-92-5-105856-5.
- Mitsch, W.J.; Mander, Ü. Wetlands and Carbon Revisited. Ecol. Eng. 2018, 114, 1–6. [Google Scholar] [CrossRef]
- Soper, F.M.; MacKenzie, R.A.; Sharma, S.; Cole, T.G.; Litton, C.M.; Sparks, J.P. Non-Native Mangroves Support Carbon Storage, Sediment Carbon Burial, and Accretion of Coastal Ecosystems. Glob. Chang. Biol. 2019, 25, 4315–4326. [Google Scholar] [CrossRef]
- Doyle, T.W.; Girod, G.F.; Books, M.A. Modeling Mangrove Forest Migration along the Southwest Coast of Florida under Climate Change. In Integrated Assessment of the Climate Change Impacts on the Gulf Coast Region; Ning, Z., Turner, R.E., Doyle, T.W., Abdollahi, K., Thornton, A., Reyes, E., Justic, D., Swenson, E., Khairy, W., Liu, K., Eds.; GCRCC: Baton Rouge, LA, USA, 2003; pp. 211–222. [Google Scholar]
- Kirwan, M.L.; Murray, A.B. A Coupled Geomorphic and Ecological Model of Tidal Marsh Evolution. Proc. Natl. Acad. Sci. USA 2007, 104, 6118–6122. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.C.L.; Pessenda, L.C.R.; Behling, H.; de Fátima Rossetti, D.; França, M.C.; Guimarães, J.T.F.; Friaes, Y.; Smith, C.B. Holocene Palaeoenvironmental History of the Amazonian Mangrove Belt. Quat. Sci. Rev. 2012, 55, 50–58. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a High Spatio-Temporal Resolution Global Database of Continuous Mangrove Forest Cover for the 21st Century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Thomas, N.; Lucas, R.; Bunting, P.; Hardy, A.; Rosenqvist, A.; Simard, M. Distribution and Drivers of Global Mangrove Forest Change, 1996–2010. PLoS ONE 2017, 12, e0179302. [Google Scholar] [CrossRef] [Green Version]
- Beselly, S.M.; van der Wegen, M.; Grueters, U.; Reyns, J.; Dijkstra, J.; Roelvink, D. Eleven Years of Mangrove–Mudflat Dynamics on the Mud Volcano-Induced Prograding Delta in East Java, Indonesia: Integrating Uav and Satellite Imagery. Remote Sens. 2021, 13, 1084. [Google Scholar] [CrossRef]
- Hsu, A.J.; Kumagai, J.; Favoretto, F.; Dorian, J.; Martinez, B.G.; Aburto-Oropeza, O. Driven by Drones: Improving Mangrove Extent Maps Using High-Resolution Remote Sensing. Remote Sens. 2020, 12, 3986. [Google Scholar] [CrossRef]
- Lucas, R.; Van De Kerchove, R.; Otero, V.; Lagomasino, D.; Fatoyinbo, L.; Omar, H.; Satyanarayana, B.; Dahdouh-Guebas, F. Structural Characterisation of Mangrove Forests Achieved through Combining Multiple Sources of Remote Sensing Data. Remote Sens. Environ. 2020, 237, 111543. [Google Scholar] [CrossRef]
- Xia, J.; Yokoya, N.; Pham, T.D. Probabilistic Mangrove Species Mapping with Multiple-Source Remote-Sensing Datasets Using Label Distribution Learning in Xuan Thuy National Park, Vietnam. Remote Sens. 2020, 12, 3834. [Google Scholar] [CrossRef]
- Sakti, A.D.; Fauzi, A.I.; Wilwatikta, F.N.; Rajagukguk, Y.S.; Sudhana, S.A.; Yayusman, L.F.; Syahid, L.N.; Sritarapipat, T.; Principe, J.A.; Quynh Trang, N.T.; et al. Multi-Source Remote Sensing Data Product Analysis: Investigating Anthropogenic and Naturogenic Impacts on Mangroves in Southeast Asia. Remote Sens. 2020, 12, 2720. [Google Scholar] [CrossRef]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring Mangrove Forests: Are We Taking Full Advantage of Technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Sousa, W.P.; Gong, P.; Biging, G.S. Comparison of IKONOS and QuickBird Images for Mapping Mangrove Species on the Caribbean Coast of Panama. Remote Sens. Environ. 2004, 91, 432–440. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, H.; Lin, G.; Lin, H. A Small-Patched Convolutional Neural Network for Mangrove Mapping at Species Level Using High-Resolution Remote-Sensing Image. Ann. GIS 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Figueiredo, B.L.; Oliveira, N.N.; Fontes, N.A.; França, M.C.; Pessenda, L.C.R.; de Souza, A.V.; Macario, K.; Giannini, P.C.F.; Bendassolli, J.A.; et al. Impacts of Holocene and Modern Sea-Level Changes on Estuarine Mangroves from Northeastern Brazil. Earth Surf. Process. Landforms. 2020, 45, 375–392. [Google Scholar] [CrossRef]
- Bozi, B.S.; Figueiredo, B.L.; Rodrigues, E.; Cohen, M.C.L.; Pessenda, L.C.R.; Alves, E.E.N.; de Souza, A.V.; Bendassolli, J.A.; Macario, K.; Azevedo, P.; et al. Impacts of Sea-Level Changes on Mangroves from Southeastern Brazil during the Holocene and Anthropocene Using a Multi-Proxy Approach. Geomorphology 2021, 390, 107860. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Camargo, P.M.P.; Pessenda, L.C.R.; Lorente, F.L.; De Souza, A.V.; Corrêa, J.A.M.; Bendassolli, J.; Dietz, M. Effects of the Middle Holocene High Sea-Level Stand and Climate on Amazonian Mangroves. J. Quat. Sci. 2021, 36, 1013–1027. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Rodrigues, E.; Rocha, D.O.S.; Freitas, J.; Fontes, N.A.; Pessenda, L.C.R.; de Souza, A.V.; Gomes, V.L.P.; França, M.C.; Bonotto, D.M.; et al. Southward Migration of the Austral Limit of Mangroves in South America. Catena 2020, 195, 104775. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing Mangrove Forests from the Sky: Forest Inventory Using Field Data and Unmanned Aerial Vehicle (UAV) Imagery in the Matang Mangrove Forest Reserve, Peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Paradella, W.R. Use of RS1 Fine Mode and Landsat-5 TM PCA for Geomorphological Mapping in a Microtidal Mangrove Coast in the Amazon Region. Can. J. Remote. Sens. 2005, 31, 214–224. [Google Scholar] [CrossRef]
- Nascimento, W.R.; Souza-Filho, P.W.M.; Proisy, C.; Lucas, R.M.; Rosenqvist, A. Mapping Changes in the Largest Continuous Amazonian Mangrove Belt Using Object-Based Classification of Multisensor Satellite Imagery. Estuar. Coast. Shelf Sci. 2013, 117, 83–93. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; de Souza, A.V.; Rossetti, D.F.; Pessenda, L.C.R.; França, M.C. Decadal-Scale Dynamics of an Amazonian Mangrove Caused by Climate and Sea Level Changes: Inferences from Spatial–Temporal Analysis and Digital Elevation Models. Earth Surf. Process. Landfo 2018, 43, 2876–2888. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Lara, R.J. Temporal Changes of Mangrove Vegetation Boundaries in Amazonia: Application of GIS and Remote Sensing Techniques. Wetl. Ecol. Manag. 2003, 11, 223–231. [Google Scholar] [CrossRef]
- Lara, R.J.; Cohen, M.C.L. Sediment Porewater Salinity, Inundation Frequency and Mangrove Vegetation Height in Bragança, North Brazil: An Ecohydrology-Based Empirical Model. Wetl. Ecol. Manag. 2006, 14, 349–358. [Google Scholar] [CrossRef]
- Cunha-Lignon, M.; Menghini, R.P.; Santos, L.C.M.; Niemeyer-Dinóla, C.; Schaeffer-Novelli, Y. Estudos de Caso Nos Manguezais Do Estado de São Paulo (Brasil): Aplicação de Ferramentas Com Diferentes Escalas Espaço-Temporais. Rev. Gestão Costeira Integr. 2009, 9, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Villate Daza, D.A.; Moreno, H.S.; Portz, L.; Manzolli, R.P.; Bolívar-Anillo, H.J.; Anfuso, G. Mangrove Forests Evolution and Threats in the Caribbean Sea of Colombia. Water 2020, 12, 1113. [Google Scholar] [CrossRef] [Green Version]
- Patel, B.K.; Vachrajani, K.D. Pollution Status in Mangrove Ecosystem of Mahi and Dadhar River Estuaries. In National Conference on Biodiversity: Status and Challenges in Conservation—‘FAVEO’; 2013; pp. 163–172. Available online: http://www.vpmthane.org/sci/faveo/r27.pdf (accessed on 27 September 2022).
- Din, N.; Ngo-Massou, V.M.; Essomè-Koum, G.L.; Ndema-Nsombo, E.; Kottè-Mapoko, E.; Nyamsi-Moussian, L. Impact of Urbanization on the Evolution of Mangrove Ecosystems in the Wouri River Estuary (Douala Cameroon). In Coastal Wetlands: Alteration and Remediation; Finkl, C.W., Makowski, C., Eds.; Springer International Publishing: Cham, Swizerland, 2017; Volume 21, pp. 81–131. ISBN 978-3-319-56179-0. [Google Scholar]
- Fernandes, M.E.B.; Fernandes, J.S.; Muriel-Cunha, J.; Sedovim, W.R.; Gomes, I.A.; Santana, D.S.; Sampaio, D.S.; Andrade, F.A.G.; Oliveira, F.P.; Brabo, L.B.; et al. Efeito Da Construção Da Rodovia PA-458 Sobre as Florestas de Mangue da Península Bragantina, Bragança, Pará, Brasil. UAKARI 2007, 3, 55–63. [Google Scholar] [CrossRef]
- Oliveira, M.V.C.; Henrique, M.C. No Meio Do Caminho Havia Um Mangue: Impactos Socioambientais da Estrada Bragança-Ajuruteua, Pará. História, Ciências, Saúde-Manguinhos 2018, 25, 497–514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara, R.; Szlafsztein, C.; Cohen, M.C.L.; Berger, U.; Glaser, M. Implications of Mangrove Dynamics for Private Land Use in Bragança, North Brazil: A Case Study. J. Coast. Conserv. 2002, 8, 97–102. [Google Scholar] [CrossRef]
- Souza Filho, P.W.M.; Paradella, W.R. Recognition of the Main Geobotanical Features along the Bragança Mangrove Coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 Data. Wetl. Ecol. Manag. 2002, 10, 123–132. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Behling, H.; Lara, R.J.; Smith, C.B.; Matos, H.R.S.; Vedel, V. Impact of Sea-Level and Climatic Changes on the Amazon Coastal Wetlands during the Late Holocene. Veg. Hist. Archaeobot. 2009, 18, 425–439. [Google Scholar] [CrossRef]
- Asp, N.E.; Schettini, C.A.F.; Siegle, E.; da Silva, M.S.; de Brito, R.N.R. The Dynamics of a Frictionally-Dominated Amazonian Estuary. Braz. J. Oceanogr. 2012, 60, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Asp, N.E.; Amorim de Freitas, P.T.; Gomes, V.J.C.; Gomes, J.D. Hydrodynamic Overview and Seasonal Variation of Estuaries at the Eastern Sector of the Amazonian Coast. J. Coast. Res. 2013, 165, 1092–1097. [Google Scholar] [CrossRef]
- Da Cruz, C.C.; Mendoza, U.N.; Queiroz, J.B.; Berrêdo, J.F.; Da Costa Neto, S.V.; Lara, R.J. Distribution of Mangrove Vegetation along Inundation, Phosphorus, and Salinity Gradients on the Bragança Peninsula in Northern Brazil. Plant Soil 2013, 370, 393–406. [Google Scholar] [CrossRef]
- Wang, D.; Wan, B.; Qiu, P.; Su, Y.; Guo, Q.; Wu, X. Artificial Mangrove Species Mapping Using Pléiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens. 2018, 10, 294. [Google Scholar] [CrossRef] [Green Version]
- Heumann, B.W. An Object-Based Classification of Mangroves Using a Hybrid Decision Tree-Support Vector Machine Approach. Remote Sens. 2011, 3, 2440–2460. [Google Scholar] [CrossRef] [Green Version]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bartolo, R. Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef]
- Hu, Q.; Wu, W.; Xia, T.; Yu, Q.; Yang, P.; Li, Z.; Song, Q. Exploring the Use of Google Earth Imagery and Object-Based Methods in Land Use/Cover Mapping. Remote Sens. 2013, 5, 6026–6042. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Pontius, R.G.; Rakshit, R. A Review of Accuracy Assessment for Object-Based Image Analysis: From per-Pixel to per-Polygon Approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- ESRI Create Accuracy Assessment Points (Image Analyst). Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/image-analyst/create-accuracy-assessment-points.htm (accessed on 8 November 2021).
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9780429052729. [Google Scholar]
- Pontius, R.G.; Millones, M. Death to Kappa: Birth of Quantity Disagreement and Allocation Disagreement for Accuracy Assessment. Int. J. Remote Sens. 2011, 32, 4407–4429. [Google Scholar] [CrossRef]
- Kongwongjan, J.; Suwanprasit, C.; Thongchumnum, P. Comparison of Vegetation Indices for Mangrove Mapping Using THEOS Data. Proc. Asia-Pac. Adv. Netw. 2012, 33, 56–64. [Google Scholar] [CrossRef] [Green Version]
- Zulfa, A.W.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Rhyma, P.P.; Fitrianto, A. Spectral Signature Analysis to Determine Mangrove Species Delineation Structured by Anthropogenic Effects. Ecol. Indic. 2021, 130, 108148. [Google Scholar] [CrossRef]
- Pop, A.; Zoran, M.; Braescu, C.L.; Necsoiu, M.; Serban, F.; Petrica, A. Spectral Reflectance Signification in Satellite Imagery. In Photon Transport in Highly Scattering Tissue, Proceedings of the International Symposium on Biomedical Optics Europe ‘94, Lille, France, 6–10 September 1994; SPIE: Bellingham, WA, USA, 1995; Volume 2326, pp. 436–447. [Google Scholar] [CrossRef]
- Mafi-Gholami, D.; Mahmoudi, B.; Zenner, E.K. An Analysis of the Relationship between Drought Events and Mangrove Changes Along the Northern Coasts of the Persian Gulf and Oman Sea. Estuar. Coast. Shelf Sci. 2017, 199, 141–151. [Google Scholar] [CrossRef]
- Carugati, L.; Gatto, B.; Rastelli, E.; Lo Martire, M.; Coral, C.; Greco, S.; Danovaro, R. Impact of Mangrove Forests Degradation on Biodiversity and Ecosystem Functioning. Sci. Rep. 2018, 8, 13298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Instituto Nacional de Meteorologia INMET. Available online: https://portal.inmet.gov.br/ (accessed on 20 June 2021).
- Golden Gate Weather Services GGWS. Available online: http://ggweather.com/enso/oni.htm (accessed on 15 June 2021).
- Rebelo-Mochel, F.; Ponzoni, F.J. Spectral Characterization of Mangrove Leaves in the Brazilian Amazonian Coast: Turiaçu Bay, Maranhão State. An. Acad. Bras. Cienc. 2007, 79, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Kelcey, J.; Lucieer, A. Sensor Correction of a 6-Band Multispectral Imaging Sensor for UAV Remote Sensing. Remote Sens. 2012, 4, 1462–1493. [Google Scholar] [CrossRef]
- Lamers, L.P.M.; Govers, L.L.; Janssen, I.C.J.M.; Geurts, J.J.M.; Van der Welle, M.E.W.; Van Katwijk, M.M.; Van der Heid, T.; Roelofs, J.G.M.; Smolders, A.J.P. Sulfide as a Soil Phytotoxin-a Review. Front. Plant Sci. 2013, 4, 268. [Google Scholar] [CrossRef] [Green Version]
- Holguin, G.; Vazquez, P.; Bashan, Y. The Role of Sediment Microorganisms in the Productivity, Conservation, and Rehabilitation of Mangrove Ecosystems: An Overview. Biol. Fertil. Soils 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity Tolerance in Halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, H.T.; Stanton, D.E.; Schmitz, N.; Farquhar, G.D.; Ball, M.C. Growth Responses of the Mangrove Avicennia Marina to Salinity: Development and Function of Shoot Hydraulic Systems Require Saline Conditions. Ann. Bot. 2015, 115, 397–407. [Google Scholar] [CrossRef]
- Ball, M.C. Salinity Tolerance in the Mangroves Aegiceras Corniculatum and Avicennia Marina. I. Water Use in Relation to Growth, Carbon Partitioning, and Salt Balance. Aust. J. Plant Physiol. 1988, 15, 447–464. [Google Scholar] [CrossRef]
- Zhao, X.; Rivera-Monroy, V.H.; Wang, H.; Xue, Z.G.; Tsai, C.F.; Willson, C.S.; Castañeda-Moya, E.; Twilley, R.R. Modeling Soil Porewater Salinity in Mangrove Forests (Everglades, Florida, USA) Impacted by Hydrological Restoration and a Warming Climate. Ecol. Modell. 2020, 436, 109292. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental Drivers in Mangrove Establishment and Early Development: A Review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Parida, A.K.; Jha, B. Salt Tolerance Mechanisms in Mangroves: A Review. Trees-Struct. Funct. 2010, 24, 199–217. [Google Scholar] [CrossRef]
- Albuquerque, A.G.B.M.; Ferreira, T.O.; Cabral, R.L.; Nóbrega, G.N.; Romero, R.E.; Meireles, A.J.D.A.; Otero, X.L. Hypersaline Tidal Flats (Apicum Ecosystems): The Weak Link in the Tropical Wetlands Chain. Environ. Rev. 2014, 22, 99–109. [Google Scholar] [CrossRef]
- Coffin, A.W.; Ouren, D.S.; Bettez, N.D.; Borda-de-Água, L.; Daniels, A.E.; Grilo, C.; Jaeger, J.A.G.; Navarro, L.M.; Preisler, H.K.; Rauschert, E.S.J. The Ecology of Rural Roads: Effects, Management and Research. Issues Ecol. 2021, 1–35. [Google Scholar]
- Sherman, R.E.; Fahey, T.J.; Martinez, P. Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems 2003, 6, 384–398. [Google Scholar] [CrossRef]
- Madrid, E.N.; Armitage, A.R.; Lopez-Portillo, J. Avicennia Germinans (Black Mangrove) Vessel Architecture Is Linked to Chilling and Salinity Tolerance in the Gulf of Mexico. Front. Plant Sci. 2014, 5, 503. [Google Scholar] [CrossRef] [Green Version]
- Deljouei, A.; Sadeghi, S.M.M.; Abdi, E.; Bernhardt-Römermann, M.; Pascoe, E.L.; Marcantonio, M. The Impact of Road Disturbance on Vegetation and Soil Properties in a Beech Stand, Hyrcanian Forest. Eur. J. For. Res. 2018, 137, 759–770. [Google Scholar] [CrossRef]
- Trombulak, S.C.; Frissell, C.A. Review of Ecological Effects of Roads on Terrestrial and Aquatic Communities. Conserv. Biol. 2000, 14, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Anthony, E.; Goichot, M. Sediment Flow in the Context of Mangrove Restoration and Conservation; World Wide Fund for Nature: Gland, Switzerland, 2020; ISBN 288085-0968. Available online: http://www.mangrovealliance.org/wp-content/uploads/2020/01/WWF-MCR-Sediment-Flow-in-the-Context-of-Mangrove-Restoration-and-Conservation-v6.5-WEB.pdf (accessed on 27 September 2022).
- McLachlan, R.L.; Ogston, A.S.; Asp, N.E.; Fricke, A.T.; Nittrouer, C.A.; Gomes, V.J.C. Impacts of Tidal-Channel Connectivity on Transport Asymmetry and Sediment Exchange with Mangrove Forests. Estuar. Coast. Shelf Sci. 2020, 233, 106524. [Google Scholar] [CrossRef]
- Liu, S.L.; Liu, Q.; Wang, C.; Yang, J.J.; Deng, L. Effects of road construction on regional vegetation types. J. Appl. Ecol. 2013, 24, 1192–1198. [Google Scholar]
- Feng, S.; Liu, S.; Jing, L.; Zhu, Y.; Yan, W.; Jiang, B.; Liu, M.; Lu, W.; Ning, Y.; Wang, Z.; et al. Quantification of the Environmental Impacts of Highway Construction Using Remote Sensing Approach. Remote Sens. 2021, 13, 1340. [Google Scholar] [CrossRef]
- Cohen, M.C.L.; Souza Filho, P.W.M.; Lara, R.J.; Behling, H.; Angulo, R.J. A Model of Holocene Mangrove Development and Relative Sea-Level Changes on the Bragança Peninsula (Northern Brazil). Wetl. Ecol. Manag. 2005, 13, 433–443. [Google Scholar] [CrossRef]
- Souza-Filho, P.W.M.; Lessa, G.C.; Cohen, M.C.L.; Costa, F.R.; Lara, R.J. The Subsiding Macrotidal Barrier Estuarine System of the Eastern Amazon Coast, Northern Brazil. In Geology of Brazilian Coastal Barriers; Dillenburg, S.F., Hesp, P.A., Eds.; Springer: New York, NY, USA, 2009. [Google Scholar] [CrossRef]
- Lindsey, R. Climate Change: Global Sea Level. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-global-sea-level (accessed on 1 November 2021).
Pléiades-1 and RapidEye | Google Earth | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bands (B): | B1: Blue, B2: Green, B3: Red, B4: NIR, B5: NDWI, B6: NDVI | B1: Blue, B2: Green, B3: Red | |||||||
Level | Classes | Scale | Shape | Comp | Weights | Scale | Shape | Comp | Weights |
1 | Clouds, Construction land and others, Degraded mangrove, Vegetation, Water | 100 | 0.2 | 0.8 | B1: 1, B2: 1, B3: 1, B4: 4, B5: 1, B6: 1 | 100 | 0.2 | 0.5 | B1: 1, B2: 1, B3: 1 |
2 | Mangrove, non-mangrove | 20 | 0.2 | 0.6 | B1: 1, B2: 1, B3: 1, B4: 4, B5: 1. B6: 2 | 20 | 0.2 | 0.5 | B1: 1, B2: 4, B3: 1 |
3 | Avicennia, Rhizophora |
Drone Type | Focal Length (mm) | Sensor Width (mm) | Image Width (Pixels) | Frontal Overlap | Lateral Overlap | Ground Camera Angle |
---|---|---|---|---|---|---|
Phantom 4 | 3.61 | 6.17 | 4096 | 85% | 75% | 90° |
Mid-Resolution Dataset | High-Resolution Dataset | ||||
---|---|---|---|---|---|
Sensor | Date | Area (ha) | Sensor | Date | Area (ha) |
LT5 MSS & TM | 27/8/1986 | 429.08 | Google Earth (Quick bird) | 21/9/2003 | 284.55 |
LT5 MSS & TM | 1/10/1993 | 349.03 | |||
LT7 ETM+ | 7/8/1999 | 386.95 | |||
LT5 MSS & TM | 3/9/2006 | 269.65 | |||
LT5 MSS & TM | 26/6/2010 | 211.95 | PLEIADES-1 | 8/8/2015 | 151.60 |
LT8 OLI & TIRS | 17/12/2015 | 223.08 | 13/9/2017 | 199.06 | |
ST2 MSI | 5/9/2019 | 181.12 | 13/7/2019 | 72.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardenas, S.M.M.; Cohen, M.C.L.; Ruiz, D.P.C.; Souza, A.V.; Gomez-Neita, J.S.; Pessenda, L.C.R.; Culligan, N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sens. 2022, 14, 6197. https://doi.org/10.3390/rs14246197
Cardenas SMM, Cohen MCL, Ruiz DPC, Souza AV, Gomez-Neita JS, Pessenda LCR, Culligan N. Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sensing. 2022; 14(24):6197. https://doi.org/10.3390/rs14246197
Chicago/Turabian StyleCardenas, Sergio M. M., Marcelo C. L. Cohen, Diana P. C. Ruiz, Adriana V. Souza, Juan. S. Gomez-Neita, Luiz C. R. Pessenda, and Nicholas Culligan. 2022. "Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces" Remote Sensing 14, no. 24: 6197. https://doi.org/10.3390/rs14246197
APA StyleCardenas, S. M. M., Cohen, M. C. L., Ruiz, D. P. C., Souza, A. V., Gomez-Neita, J. S., Pessenda, L. C. R., & Culligan, N. (2022). Death and Regeneration of an Amazonian Mangrove Forest by Anthropic and Natural Forces. Remote Sensing, 14(24), 6197. https://doi.org/10.3390/rs14246197