Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020
Abstract
1. Introduction
2. Materials and Methods
2.1. Arctic Sectors
2.2. Data
2.2.1. Observations

2.2.2. CALIPSO Datasets
2.2.3. Gridded Datasets
2.3. FNN-LID Method
2.4. Global Air–Sea CO2 Flux Estimates
2.5. Interpretation of Statistics
3. Results
3.1. Validation of FNN-LID pCO2
3.2. Sea Surface pCO2 during Polar Night and Seasonal Variations
3.3. Distributions of Arctic Ocean pCO2 and Flux
4. Discussion
4.1. Long-Time-Series Variations in Arctic pCO2
4.2. Diurnal Carbon Fluxes and Mechanism Analysis in the Arctic
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; Van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193–1199. [Google Scholar] [CrossRef] [PubMed]
- McNeil, B.I.; Sasse, T.P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 2016, 529, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Olafsson, J.; Goddard, J.G.; Chipman, D.W.; Sutherland, S. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Glob. Biogeochem. Cycles 1993, 7, 843–878. [Google Scholar] [CrossRef]
- Sarmiento, J.L. Ocean biogeochemical dynamics. In Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Chipman, D.W.; Goddard, J.G.; Ho, C.; Newberger, T.; Sweeney, C.; Munro, D. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 2014, 164, 95–125. [Google Scholar] [CrossRef]
- Bates, N.R.; Astor, Y.M.; Church, M.J.; Currie, K.; Dore, J.E.; González-Dávila, M.; Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santana-Casiano, J.M. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 2014, 27, 126–141. [Google Scholar] [CrossRef]
- Rödenbeck, C.; Bakker, D.C.; Gruber, N.; Iida, Y.; Jacobson, A.R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.-I.; Olsen, A. Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO 2 Mapping intercomparison (SOCOM). Biogeosciences 2015, 12, 7251–7278. [Google Scholar] [CrossRef]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B. Global carbon budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.; Wallace, D.W.; Tilbrook, B. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef]
- IPCC. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Onarheim, I.H.; Eldevik, T.; Smedsrud, L.H.; Stroeve, J.C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 2018, 31, 4917–4932. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Timmermans, M.L.; Proshutinsky, A.; Golubeva, E.; Jackson, J.; Krishfield, R.; McCall, M.; Platov, G.; Toole, J.; Williams, W.; Kikuchi, T. Mechanisms of Pacific summer water variability in the Arctic’s Central Canada Basin. J. Geophys. Res. Ocean. 2014, 119, 7523–7548. [Google Scholar] [CrossRef]
- Corlett, W.B.; Pickart, R.S. The Chukchi slope current. Prog. Oceanogr. 2017, 153, 50–65. [Google Scholar] [CrossRef]
- Stabeno, P.; Kachel, N.; Ladd, C.; Woodgate, R. Flow patterns in the eastern Chukchi Sea: 2010–2015. J. Geophys. Res. Ocean. 2018, 123, 1177–1195. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L.; Wingham, D.J.; Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 2012, 5, 194–197. [Google Scholar] [CrossRef]
- Yamamoto-Kawai, M.; McLaughlin, F.; Carmack, E.; Nishino, S.; Shimada, K.; Kurita, N. Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. J. Geophys. Res. Ocean. 2009, 114, C00A05. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 2015, 136, 60–70. [Google Scholar] [CrossRef]
- Yamamoto-Kawai, M.; McLaughlin, F.A.; Carmack, E.C.; Nishino, S.; Shimada, K. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 2009, 326, 1098–1100. [Google Scholar] [CrossRef]
- Arctic Monitoring and Assessment Programme (AMAP). Arctic Ocean Acidification Assessment: 2018 Summary for Policy-Makers; AMAP: Oslo, Norway, 2019. [Google Scholar]
- Bates, N.R.; Moran, S.B.; Hansell, D.A.; Mathis, J.T. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett. 2006, 33, L23609. [Google Scholar] [CrossRef]
- Cai, W.-J.; Chen, L.; Chen, B.; Gao, Z.; Lee, S.H.; Chen, J.; Pierrot, D.; Sullivan, K.; Wang, Y.; Hu, X. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 2010, 329, 556–559. [Google Scholar] [CrossRef]
- Else, B.G.; Galley, R.; Lansard, B.; Barber, D.; Brown, K.; Miller, L.; Mucci, A.; Papakyriakou, T.; Tremblay, J.É.; Rysgaard, S. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss. Geophys. Res. Lett. 2013, 40, 1132–1137. [Google Scholar] [CrossRef]
- Ouyang, Z.; Qi, D.; Chen, L.; Takahashi, T.; Zhong, W.; DeGrandpre, M.D.; Chen, B.; Gao, Z.; Nishino, S.; Murata, A. Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nat. Clim. Chang. 2020, 10, 678–684. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; Bruhwiler, L.M.; Commane, R.; Parmentier, F.-J.W.; Schädel, C.; Schuur, E.A.; Watts, J. Current knowledge and uncertainties associated with the Arctic greenhouse gas budget. In Balancing Greenhouse Gas Budgets; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–201. [Google Scholar]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 1998, 43, 647–656. [Google Scholar] [CrossRef]
- Blomquist, B.W.; Huebert, B.J.; Fairall, C.W.; Bariteau, L.; Edson, J.B.; Hare, J.E.; McGillis, W.R. Advances in Air–Sea CO2 Flux Measurement by Eddy Correlation. Bound. -Layer Meteorol. 2014, 152, 245–276. [Google Scholar] [CrossRef]
- Thornton, B.F.; Prytherch, J.; Andersson, K.; Brooks, I.M.; Salisbury, D.; Tjernström, M.; Crill, P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci. Adv. 2020, 6, eaay7934. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, D.B.; Hermans, T.D.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R.G.; Björkman, M.P.; Blok, D.; Chaudhary, N.; Chisholm, C. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2018, 2, 1443–1448. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Pabi, S.; van Dijken, G.L.; Maslowski, W. Air-sea flux of CO2 in the Arctic Ocean, 1998–2003. J. Geophys. Res. Biogeosciences 2010, 115, G04024. [Google Scholar] [CrossRef]
- Lefèvre, N.; Watson, A.J.; Watson, A.R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus B: Chem. Phys. Meteorol. 2005, 57, 375–384. [Google Scholar] [CrossRef]
- Friedrich, T.; Oschlies, A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study. J. Geophys. Res. Ocean. 2009, 114, C03020. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U.; Nakaoka, S.-i.; Payne, M.R.; Sasse, T.P.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef]
- Nakaoka, S.-i.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N. Estimating temporal and spatial variation of ocean surface pCO 2 in the North Pacific using a self-organizing map neural network technique. Biogeosciences 2013, 10, 6093–6106. [Google Scholar] [CrossRef]
- Laruelle, G.G.; Landschützer, P.; Gruber, N.; Tison, J.-L.; Delille, B.; Regnier, P. Global high-resolution monthly pCO 2 climatology for the coastal ocean derived from neural network interpolation. Biogeosciences 2017, 14, 4545–4561. [Google Scholar] [CrossRef]
- Denvil-Sommer, A.; Gehlen, M.; Vrac, M.; Mejia, C. ffnn-lsce: A two-step neural network model for the reconstruction of surface ocean pco 2 over the global ocean. Geosci. Model Dev. 2019, 12, 2091–2105. [Google Scholar] [CrossRef]
- Chau, T.T.T.; Gehlen, M.; Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO 2 and air–sea CO 2 fluxes over the global coastal and open oceans. Biogeosciences 2022, 19, 1087–1109. [Google Scholar] [CrossRef]
- Yasunaka, S.; Murata, A.; Watanabe, E.; Chierici, M.; Fransson, A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Johannessen, T.; Kosugi, N. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability. Polar Sci. 2016, 10, 323–334. [Google Scholar] [CrossRef]
- Yasunaka, S.; Siswanto, E.; Olsen, A.; Hoppema, M.; Watanabe, E.; Fransson, A.; Chierici, M.; Murata, A.; Lauvset, S.K.; Wanninkhof, R. Arctic Ocean CO 2 uptake: An improved multiyear estimate of the air–sea CO 2 flux incorporating chlorophyll a concentrations. Biogeosciences 2018, 15, 1643–1661. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; O’Malley, R.T.; Boss, E.S.; Hostetler, C.A.; Siegel, D.A.; Sarmiento, J.L.; Schulien, J.; Hair, J.W.; Lu, X. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2017, 10, 118–122. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Trepte, C.; Zeng, S.; Churnside, J.H. Ocean subsurface studies with the CALIPSO spaceborne lidar. J. Geophys. Res. Ocean. 2014, 119, 4305–4317. [Google Scholar] [CrossRef]
- Hu, Y.; Stamnes, K.; Vaughan, M.; Pelon, J.; Weimer, C.; Wu, D.; Cisewski, M.; Sun, W.; Yang, P.; Lin, B. Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 2008, 8, 3593–3601. [Google Scholar] [CrossRef]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B. CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Yang, Y.; Bontempi, P.; Omar, A.; Baize, R. Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sens. Environ. 2020, 245, 111827. [Google Scholar] [CrossRef]
- Dionisi, D.; Brando, V.E.; Volpe, G.; Colella, S.; Santoleri, R. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black Sea. Remote Sens. Environ. 2020, 247, 111889. [Google Scholar] [CrossRef]
- Jamet, C.; Mj, B.; Ab, D.; Ov, K.; Ibrahim, A.; Ahmad, Z.; Angelini, F.; Babin, M.; J Behrenfeld, M.; Boss, E.; et al. Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry. Front. Mar. Sci. 2019, 6, 251. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Behrenfeld, M.J.; Hu, Y.; Hair, J.W.; Schulien, J.A. Spaceborne Lidar in the Study of Marine Systems. Annu. Rev. Mar. Sci. 2018, 10, 121–147. [Google Scholar] [CrossRef]
- Pfeil, B.; Olsen, A.; Bakker, D.C.; Hankin, S.; Koyuk, H.; Kozyr, A.; Malczyk, J.; Manke, A.; Metzl, N.; Sabine, C.L. A uniform, quality controlled Surface Ocean CO 2 Atlas (SOCAT). Earth Syst. Sci. Data 2013, 5, 125–143. [Google Scholar] [CrossRef]
- Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A. Surface Ocean CO 2 Atlas (SOCAT) gridded data products. Earth Syst. Sci. Data 2013, 5, 145–153. [Google Scholar] [CrossRef]
- Bakker, D.C.; Pfeil, B.; Landa, C.S.; Metzl, N.; O’brien, K.M.; Olsen, A.; Smith, K.; Cosca, C.; Harasawa, S.; Jones, S.D. A multi-decade record of high-quality fCO 2 data in version 3 of the Surface Ocean CO 2 Atlas (SOCAT). Earth Syst. Sci. Data 2016, 8, 383–413. [Google Scholar] [CrossRef]
- Körtzinger, A. Chap. Determination of carbon dioxide partial pressure (pCO2). In Methods of Seawater Analysis; WILEY: Hoboken, NJ, USA, 1999; pp. 149–158. [Google Scholar]
- Weiss, H.R. Control of myocardial oxygenation—Effect of atrial pacing. Microvasc. Res. 1974, 8, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.; Key, R.M.; Van Heuven, S.; Lauvset, S.K.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M. The Global Ocean Data Analysis Project version 2 (GLODAPv2)–an internally consistent data product for the world ocean. Earth Syst. Sci. Data 2016, 8, 297–323. [Google Scholar] [CrossRef]
- Olsen, A.; Lange, N.; Key, R.M.; Tanhua, T.; Bittig, H.C.; Kozyr, A.; Álvarez, M.; Azetsu-Scott, K.; Becker, S.; Brown, P.J. An updated version of the global interior ocean biogeochemical data product, GLODAPv2. 2020. Earth Syst. Sci. Data 2020, 12, 3653–3678. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef]
- Behrenfeld, M.; Hu, Y.; Bisson, K.; Lu, X.; Westberry, T. Retrieval of ocean optical and plankton properties with the satellite Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor: Background, data processing, and validation status. Remote Sens. Environ. 2022, 281, 113235. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Vaughan, M.; Rodier, S.; Omar, A. New attenuated backscatter profile by removing the CALIOP receiver’s transient response. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107244. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall”Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Bisson, K.M.; Boss, E.; Werdell, P.J.; Ibrahim, A.; Behrenfeld, M.J. Particulate Backscattering in the Global Ocean: A Comparison of Independent Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090909. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Huang, J.; Stamnes, K.; Yi, Y.; Stamnes, S. A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal. Atmos. Chem. Phys. 2011, 11, 2903–2916. [Google Scholar] [CrossRef]
- Murphy, A.; Hu, Y. Retrieving Aerosol Optical Depth and High Spatial Resolution Ocean Surface Wind Speed From CALIPSO: A Neural Network Approach. Front. Remote Sens. 2021, 1, 614029. [Google Scholar] [CrossRef]
- Meier, W.N.; Gallaher, D.; Campbell, G. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 2013, 7, 699–705. [Google Scholar] [CrossRef]
- Amari, S.-I.; Murata, N.; Muller, K.-R.; Finke, M.; Yang, H.H. Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans. Neural Netw. 1997, 8, 985–996. [Google Scholar] [CrossRef]
- Ouyang, Z.; Qi, D.; Zhong, W.; Chen, L.; Gao, Z.; Lin, H.; Sun, H.; Li, T.; Cai, W.J. Summertime evolution of net community production and CO2 flux in the western Arctic Ocean. Glob. Biogeochem. Cycles 2021, 35, e2020GB006651. [Google Scholar] [CrossRef]
- Loose, B.; McGillis, W.R.; Perovich, D.; Zappa, C.J.; Schlosser, P. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Sci. 2014, 10, 17–28. [Google Scholar] [CrossRef]
- Butterworth, B.J.; Miller, S.D. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 2016, 43, 7223–7230. [Google Scholar] [CrossRef]
- Long, M.C.; Dunbar, R.B.; Tortell, P.D.; Smith, W.O.; Mucciarone, D.A.; DiTullio, G.R. Vertical structure, seasonal drawdown, and net community production in the Ross Sea, Antarctica. J. Geophys. Res. Ocean. 2011, 116, C10029. [Google Scholar] [CrossRef][Green Version]
- Prytherch, J.; Brooks, I.M.; Crill, P.M.; Thornton, B.F.; Salisbury, D.J.; Tjernström, M.; Anderson, L.G.; Geibel, M.C.; Humborg, C. Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions. Geophys. Res. Lett. 2017, 44, 3770–3778. [Google Scholar] [CrossRef]
- Loose, B.; McGillis, W.; Schlosser, P.; Perovich, D.; Takahashi, T. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 2009, 36, L05603. [Google Scholar] [CrossRef]
- Semiletov, I.; Makshtas, A.; Akasofu, S.I.; L Andreas, E. Atmospheric CO2 balance: The role of Arctic sea ice. Geophys. Res. Lett. 2004, 31, L05121. [Google Scholar] [CrossRef]
- Garbe, C.S.; Rutgersson, A.; Boutin, J.; Leeuw, G.d.; Delille, B.; Fairall, C.W.; Gruber, N.; Hare, J.; Ho, D.T.; Johnson, M.T. Transfer across the air-sea interface. In Ocean-Atmosphere Interactions of Gases and Particles; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–112. [Google Scholar]
- Kwiatkowski, L.; Orr, J.C. Diverging seasonal extremes for ocean acidification during the twenty-first century. Nat. Clim. Chang. 2018, 8, 141–145. [Google Scholar] [CrossRef]
- Gallego, M.; Timmermann, A.; Friedrich, T.; Zeebe, R.E. Drivers of future seasonal cycle changes in oceanic pCO 2. Biogeosciences 2018, 15, 5315–5327. [Google Scholar] [CrossRef]
- Pipko, I.; Semiletov, I.; Tishchenko, P.Y.; Pugach, S.; Savel’eva, N. Variability of the carbonate system parameters in the coast-shelf zone of the East Siberian Sea during the autumn season. Oceanology 2008, 48, 54–67. [Google Scholar] [CrossRef]
- Pipko, I.; Semiletov, I.; Pugach, S. The carbonate system of the East Siberian Sea waters. Dokl. Earth Sci./Doklady-Akademiia Nauk 2005, 402, 624–627. [Google Scholar]
- Semiletov, I.P.; Pipko, I.I.; Repina, I.; Shakhova, N.E. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere–ice–water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J. Mar. Syst. 2007, 66, 204–226. [Google Scholar] [CrossRef]
- Semiletov, I.; Shakhova, N.; Pipko, I.; Pugach, S.; Charkin, A.; Dudarev, O.; Kosmach, D.; Nishino, S. Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea. Biogeosciences 2013, 10, 5977–5996. [Google Scholar] [CrossRef]
- Pipko, I.; Semiletov, I.; Pugach, S.; Wåhlström, I.; Anderson, L. Interannual variability of air-sea CO 2 fluxes and carbon system in the East Siberian Sea. Biogeosciences 2011, 8, 1987–2007. [Google Scholar] [CrossRef]
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Pabi, S.; van Dijken, G.L.; Arrigo, K.R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. Ocean. 2008, 113, C08005. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Milligan, A.J.; Siegel, D.A.; Brown, M.B. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 2016, 6, 323–330. [Google Scholar] [CrossRef]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22, GB2024. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Gaube, P.; Della Penna, A.; O’malley, R.T.; Burt, W.J.; Hu, Y.; Bontempi, P.S.; Steinberg, D.K.; Boss, E.S.; Siegel, D.A. Global satellite-observed daily vertical migrations of ocean animals. Nature 2019, 576, 257–261. [Google Scholar] [CrossRef]
- Stramski, D.; Shalapyonok, A.; Reynolds, R.A. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance. J. Geophys. Res. Ocean. 1995, 100, 13295–13307. [Google Scholar] [CrossRef]
- DuRand, M.D.; Green, R.E.; Sosik, H.M.; Olson, R.J. Diel variations in optical properties of Micromonas pusilla (prasinophyceae) 1. J. Phycol. 2002, 38, 1132–1142. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Boss, E.; Behrenfeld, M.J.; Westberry, T.; Courties, C.; Prieur, L.; Pujo-Pay, M.; Hardman-Mountford, N.; Moutin, T. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient. Biogeosciences 2011, 8, 3423–3439. [Google Scholar] [CrossRef]












| Components | Wavelength | Polarization | |
|---|---|---|---|
| 1 | Ocean surface and subsurface LiDAR backscatter | 532 nm | Total |
| 3 | Ocean surface and subsurface LiDAR backscatter | 532 nm | Perpendicular |
| 5 | Ocean surface and subsurface LiDAR backscatter | 1064 nm | - |
| 2 | Column integrated atmospheric LiDAR backscatter | 532 nm | Total |
| 4 | Column integrated atmospheric LiDAR backscatter | 532 nm | Perpendicular |
| 6 | Column integrated atmospheric LiDAR backscatter | 1064 nm | - |
| 7 | Latitude | - | - |
| Satellite and Reanalysis Environmental Datasets for Reconstructing Ocean Surface pCO2 and Air–Sea Carbon Flux | |||
|---|---|---|---|
| Component | Dataset | Temporal Scale | Website |
| Sea surface temperature | CMEMS | Monthly | https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS (accessed on 10 September 2022) |
| Sea surface salinity | |||
| Sea surface height | |||
| Mixed layer depth | |||
| Chl-a | GlobColour | Monthly | https://www.globcolor.info/products_description.html (accessed on 10 September 2022) |
| CALIPSO | Monthly/diurnal | CALIPSO retrievals | |
| Atmospheric CO2 mole fraction | ECMWF | Monthly/diurnal | https://ads.atmosphere.copernicus.eu (accessed on 10 September 2022) |
| Climatological pCO2 | Takahashi et al., 2009 | Monthly | - |
| Satellite and reanalysis environmental datasets for reconstructing the air–sea Carbon flux | |||
| 10 m wind speed | CALIPSO | Monthly/diurnal | CALIPSO retrievals |
| CCMP | Monthly | https://www.remss.com/measurements/ccmp/ (accessed on 10 September 2022) | |
| Pressure | ECMWF | Monthly/diurnal | https://ads.atmosphere.copernicus.eu (accessed on 10 September 2022) |
| Sea ice concentration | CMEMS | Monthly | https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS (accessed on 10 September 2022) |
| RMSE (μatm) | R2 | Bias (μatm) | Number | Original Coverage Area | |
|---|---|---|---|---|---|
| CMEMS | 31.22 | 0.64 | 0.27 | 12,402 | Global |
| IBP | 29.36 | 0.68 | −1.21 | 15,445 | Global |
| JMA | 26.71 | 0.63 | 1.01 | 6412 | Global |
| IOCAS | 29.65 | 0.61 | −4.52 | 11,255 | Global |
| FNN-LID | 25.59 | 0.75 | −0.14 | 10,266 | Global |
| Yasunaka et al., 2016 | 32 | 0.8 | - | - | Arctic Ocean |
| Yasunaka et al., 2018 | 30 | 0.82 | - | - | Arctic Ocean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, P.; Zhang, Z.; Pan, D. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sens. 2022, 14, 6196. https://doi.org/10.3390/rs14246196
Zhang S, Chen P, Zhang Z, Pan D. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sensing. 2022; 14(24):6196. https://doi.org/10.3390/rs14246196
Chicago/Turabian StyleZhang, Siqi, Peng Chen, Zhenhua Zhang, and Delu Pan. 2022. "Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020" Remote Sensing 14, no. 24: 6196. https://doi.org/10.3390/rs14246196
APA StyleZhang, S., Chen, P., Zhang, Z., & Pan, D. (2022). Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sensing, 14(24), 6196. https://doi.org/10.3390/rs14246196

