Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Arctic Sectors
2.2. Data
2.2.1. Observations
2.2.2. CALIPSO Datasets
2.2.3. Gridded Datasets
2.3. FNN-LID Method
2.4. Global Air–Sea CO2 Flux Estimates
2.5. Interpretation of Statistics
3. Results
3.1. Validation of FNN-LID pCO2
3.2. Sea Surface pCO2 during Polar Night and Seasonal Variations
3.3. Distributions of Arctic Ocean pCO2 and Flux
4. Discussion
4.1. Long-Time-Series Variations in Arctic pCO2
4.2. Diurnal Carbon Fluxes and Mechanism Analysis in the Arctic
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruber, N.; Clement, D.; Carter, B.R.; Feely, R.A.; Van Heuven, S.; Hoppema, M.; Ishii, M.; Key, R.M.; Kozyr, A.; Lauvset, S.K. The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science 2019, 363, 1193–1199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeil, B.I.; Sasse, T.P. Future ocean hypercapnia driven by anthropogenic amplification of the natural CO2 cycle. Nature 2016, 529, 383–386. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, T.; Olafsson, J.; Goddard, J.G.; Chipman, D.W.; Sutherland, S. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Glob. Biogeochem. Cycles 1993, 7, 843–878. [Google Scholar] [CrossRef]
- Sarmiento, J.L. Ocean biogeochemical dynamics. In Ocean Biogeochemical Dynamics; Princeton University Press: Princeton, NJ, USA, 2013. [Google Scholar]
- Takahashi, T.; Sutherland, S.C.; Wanninkhof, R.; Sweeney, C.; Feely, R.A.; Chipman, D.W.; Hales, B.; Friederich, G.; Chavez, F.; Sabine, C. Climatological mean and decadal change in surface ocean pCO2, and net sea–air CO2 flux over the global oceans. Deep Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 554–577. [Google Scholar] [CrossRef]
- Takahashi, T.; Sutherland, S.C.; Chipman, D.W.; Goddard, J.G.; Ho, C.; Newberger, T.; Sweeney, C.; Munro, D. Climatological distributions of pH, pCO2, total CO2, alkalinity, and CaCO3 saturation in the global surface ocean, and temporal changes at selected locations. Mar. Chem. 2014, 164, 95–125. [Google Scholar] [CrossRef] [Green Version]
- Bates, N.R.; Astor, Y.M.; Church, M.J.; Currie, K.; Dore, J.E.; González-Dávila, M.; Lorenzoni, L.; Muller-Karger, F.; Olafsson, J.; Santana-Casiano, J.M. A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography 2014, 27, 126–141. [Google Scholar] [CrossRef] [Green Version]
- Rödenbeck, C.; Bakker, D.C.; Gruber, N.; Iida, Y.; Jacobson, A.R.; Jones, S.; Landschützer, P.; Metzl, N.; Nakaoka, S.-I.; Olsen, A. Data-based estimates of the ocean carbon sink variability–first results of the Surface Ocean pCO 2 Mapping intercomparison (SOCOM). Biogeosciences 2015, 12, 7251–7278. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Andrew, R.M.; Friedlingstein, P.; Sitch, S.; Pongratz, J.; Manning, A.C.; Korsbakken, J.I.; Peters, G.P.; Canadell, J.G.; Jackson, R.B. Global carbon budget 2017. Earth Syst. Sci. Data 2018, 10, 405–448. [Google Scholar] [CrossRef] [Green Version]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.; Wallace, D.W.; Tilbrook, B. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 1–32. [Google Scholar]
- Onarheim, I.H.; Eldevik, T.; Smedsrud, L.H.; Stroeve, J.C. Seasonal and regional manifestation of Arctic sea ice loss. J. Clim. 2018, 31, 4917–4932. [Google Scholar] [CrossRef]
- Stroeve, J.; Notz, D. Changing state of Arctic sea ice across all seasons. Environ. Res. Lett. 2018, 13, 103001. [Google Scholar] [CrossRef]
- Timmermans, M.L.; Proshutinsky, A.; Golubeva, E.; Jackson, J.; Krishfield, R.; McCall, M.; Platov, G.; Toole, J.; Williams, W.; Kikuchi, T. Mechanisms of Pacific summer water variability in the Arctic’s Central Canada Basin. J. Geophys. Res. Ocean. 2014, 119, 7523–7548. [Google Scholar] [CrossRef] [Green Version]
- Corlett, W.B.; Pickart, R.S. The Chukchi slope current. Prog. Oceanogr. 2017, 153, 50–65. [Google Scholar] [CrossRef] [Green Version]
- Stabeno, P.; Kachel, N.; Ladd, C.; Woodgate, R. Flow patterns in the eastern Chukchi Sea: 2010–2015. J. Geophys. Res. Ocean. 2018, 123, 1177–1195. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L.; Wingham, D.J.; Bacon, S. Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre. Nat. Geosci. 2012, 5, 194–197. [Google Scholar] [CrossRef]
- Yamamoto-Kawai, M.; McLaughlin, F.; Carmack, E.; Nishino, S.; Shimada, K.; Kurita, N. Surface freshening of the Canada Basin, 2003–2007: River runoff versus sea ice meltwater. J. Geophys. Res. Ocean. 2009, 114, C00A05. [Google Scholar] [CrossRef]
- Arrigo, K.R.; van Dijken, G.L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 2015, 136, 60–70. [Google Scholar] [CrossRef]
- Yamamoto-Kawai, M.; McLaughlin, F.A.; Carmack, E.C.; Nishino, S.; Shimada, K. Aragonite undersaturation in the Arctic Ocean: Effects of ocean acidification and sea ice melt. Science 2009, 326, 1098–1100. [Google Scholar] [CrossRef] [Green Version]
- Arctic Monitoring and Assessment Programme (AMAP). Arctic Ocean Acidification Assessment: 2018 Summary for Policy-Makers; AMAP: Oslo, Norway, 2019. [Google Scholar]
- Bates, N.R.; Moran, S.B.; Hansell, D.A.; Mathis, J.T. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett. 2006, 33, L23609. [Google Scholar] [CrossRef] [Green Version]
- Cai, W.-J.; Chen, L.; Chen, B.; Gao, Z.; Lee, S.H.; Chen, J.; Pierrot, D.; Sullivan, K.; Wang, Y.; Hu, X. Decrease in the CO2 uptake capacity in an ice-free Arctic Ocean basin. Science 2010, 329, 556–559. [Google Scholar] [CrossRef]
- Else, B.G.; Galley, R.; Lansard, B.; Barber, D.; Brown, K.; Miller, L.; Mucci, A.; Papakyriakou, T.; Tremblay, J.É.; Rysgaard, S. Further observations of a decreasing atmospheric CO2 uptake capacity in the Canada Basin (Arctic Ocean) due to sea ice loss. Geophys. Res. Lett. 2013, 40, 1132–1137. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.; Qi, D.; Chen, L.; Takahashi, T.; Zhong, W.; DeGrandpre, M.D.; Chen, B.; Gao, Z.; Nishino, S.; Murata, A. Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nat. Clim. Chang. 2020, 10, 678–684. [Google Scholar] [CrossRef]
- Euskirchen, E.S.; Bruhwiler, L.M.; Commane, R.; Parmentier, F.-J.W.; Schädel, C.; Schuur, E.A.; Watts, J. Current knowledge and uncertainties associated with the Arctic greenhouse gas budget. In Balancing Greenhouse Gas Budgets; Elsevier: Amsterdam, The Netherlands, 2022; pp. 159–201. [Google Scholar]
- Wanninkhof, R. Relationship between wind speed and gas exchange over the ocean revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 1998, 43, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Blomquist, B.W.; Huebert, B.J.; Fairall, C.W.; Bariteau, L.; Edson, J.B.; Hare, J.E.; McGillis, W.R. Advances in Air–Sea CO2 Flux Measurement by Eddy Correlation. Bound. -Layer Meteorol. 2014, 152, 245–276. [Google Scholar] [CrossRef] [Green Version]
- Thornton, B.F.; Prytherch, J.; Andersson, K.; Brooks, I.M.; Salisbury, D.; Tjernström, M.; Crill, P.M. Shipborne eddy covariance observations of methane fluxes constrain Arctic sea emissions. Sci. Adv. 2020, 6, eaay7934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metcalfe, D.B.; Hermans, T.D.; Ahlstrand, J.; Becker, M.; Berggren, M.; Björk, R.G.; Björkman, M.P.; Blok, D.; Chaudhary, N.; Chisholm, C. Patchy field sampling biases understanding of climate change impacts across the Arctic. Nat. Ecol. Evol. 2018, 2, 1443–1448. [Google Scholar] [CrossRef]
- Arrigo, K.R.; Pabi, S.; van Dijken, G.L.; Maslowski, W. Air-sea flux of CO2 in the Arctic Ocean, 1998–2003. J. Geophys. Res. Biogeosciences 2010, 115, G04024. [Google Scholar] [CrossRef]
- Lefèvre, N.; Watson, A.J.; Watson, A.R. A comparison of multiple regression and neural network techniques for mapping in situ pCO2 data. Tellus B: Chem. Phys. Meteorol. 2005, 57, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Friedrich, T.; Oschlies, A. Neural network-based estimates of North Atlantic surface pCO2 from satellite data: A methodological study. J. Geophys. Res. Ocean. 2009, 114, C03020. [Google Scholar] [CrossRef]
- Landschützer, P.; Gruber, N.; Bakker, D.C.; Schuster, U.; Nakaoka, S.-i.; Payne, M.R.; Sasse, T.P.; Zeng, J. A neural network-based estimate of the seasonal to inter-annual variability of the Atlantic Ocean carbon sink. Biogeosciences 2013, 10, 7793–7815. [Google Scholar] [CrossRef] [Green Version]
- Nakaoka, S.-i.; Telszewski, M.; Nojiri, Y.; Yasunaka, S.; Miyazaki, C.; Mukai, H.; Usui, N. Estimating temporal and spatial variation of ocean surface pCO 2 in the North Pacific using a self-organizing map neural network technique. Biogeosciences 2013, 10, 6093–6106. [Google Scholar] [CrossRef] [Green Version]
- Laruelle, G.G.; Landschützer, P.; Gruber, N.; Tison, J.-L.; Delille, B.; Regnier, P. Global high-resolution monthly pCO 2 climatology for the coastal ocean derived from neural network interpolation. Biogeosciences 2017, 14, 4545–4561. [Google Scholar] [CrossRef] [Green Version]
- Denvil-Sommer, A.; Gehlen, M.; Vrac, M.; Mejia, C. ffnn-lsce: A two-step neural network model for the reconstruction of surface ocean pco 2 over the global ocean. Geosci. Model Dev. 2019, 12, 2091–2105. [Google Scholar] [CrossRef] [Green Version]
- Chau, T.T.T.; Gehlen, M.; Chevallier, F. A seamless ensemble-based reconstruction of surface ocean pCO 2 and air–sea CO 2 fluxes over the global coastal and open oceans. Biogeosciences 2022, 19, 1087–1109. [Google Scholar] [CrossRef]
- Yasunaka, S.; Murata, A.; Watanabe, E.; Chierici, M.; Fransson, A.; van Heuven, S.; Hoppema, M.; Ishii, M.; Johannessen, T.; Kosugi, N. Mapping of the air–sea CO2 flux in the Arctic Ocean and its adjacent seas: Basin-wide distribution and seasonal to interannual variability. Polar Sci. 2016, 10, 323–334. [Google Scholar] [CrossRef]
- Yasunaka, S.; Siswanto, E.; Olsen, A.; Hoppema, M.; Watanabe, E.; Fransson, A.; Chierici, M.; Murata, A.; Lauvset, S.K.; Wanninkhof, R. Arctic Ocean CO 2 uptake: An improved multiyear estimate of the air–sea CO 2 flux incorporating chlorophyll a concentrations. Biogeosciences 2018, 15, 1643–1661. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Hu, Y.; O’Malley, R.T.; Boss, E.S.; Hostetler, C.A.; Siegel, D.A.; Sarmiento, J.L.; Schulien, J.; Hair, J.W.; Lu, X. Annual boom–bust cycles of polar phytoplankton biomass revealed by space-based lidar. Nat. Geosci. 2017, 10, 118–122. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Trepte, C.; Zeng, S.; Churnside, J.H. Ocean subsurface studies with the CALIPSO spaceborne lidar. J. Geophys. Res. Ocean. 2014, 119, 4305–4317. [Google Scholar] [CrossRef]
- Hu, Y.; Stamnes, K.; Vaughan, M.; Pelon, J.; Weimer, C.; Wu, D.; Cisewski, M.; Sun, W.; Yang, P.; Lin, B. Sea surface wind speed estimation from space-based lidar measurements. Atmos. Chem. Phys. 2008, 8, 3593–3601. [Google Scholar] [CrossRef]
- Hu, Y.; Winker, D.; Vaughan, M.; Lin, B.; Omar, A.; Trepte, C.; Flittner, D.; Yang, P.; Nasiri, S.L.; Baum, B. CALIPSO/CALIOP cloud phase discrimination algorithm. J. Atmos. Ocean. Technol. 2009, 26, 2293–2309. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Hu, Y.; Yang, Y.; Bontempi, P.; Omar, A.; Baize, R. Antarctic spring ice-edge blooms observed from space by ICESat-2. Remote Sens. Environ. 2020, 245, 111827. [Google Scholar] [CrossRef]
- Dionisi, D.; Brando, V.E.; Volpe, G.; Colella, S.; Santoleri, R. Seasonal distributions of ocean particulate optical properties from spaceborne lidar measurements in Mediterranean and Black Sea. Remote Sens. Environ. 2020, 247, 111889. [Google Scholar] [CrossRef]
- Jamet, C.; Mj, B.; Ab, D.; Ov, K.; Ibrahim, A.; Ahmad, Z.; Angelini, F.; Babin, M.; J Behrenfeld, M.; Boss, E.; et al. Going Beyond Standard Ocean Color Observations: Lidar and Polarimetry. Front. Mar. Sci. 2019, 6, 251. [Google Scholar] [CrossRef]
- Hostetler, C.A.; Behrenfeld, M.J.; Hu, Y.; Hair, J.W.; Schulien, J.A. Spaceborne Lidar in the Study of Marine Systems. Annu. Rev. Mar. Sci. 2018, 10, 121–147. [Google Scholar] [CrossRef] [Green Version]
- Pfeil, B.; Olsen, A.; Bakker, D.C.; Hankin, S.; Koyuk, H.; Kozyr, A.; Malczyk, J.; Manke, A.; Metzl, N.; Sabine, C.L. A uniform, quality controlled Surface Ocean CO 2 Atlas (SOCAT). Earth Syst. Sci. Data 2013, 5, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Sabine, C.L.; Hankin, S.; Koyuk, H.; Bakker, D.C.; Pfeil, B.; Olsen, A.; Metzl, N.; Kozyr, A.; Fassbender, A.; Manke, A. Surface Ocean CO 2 Atlas (SOCAT) gridded data products. Earth Syst. Sci. Data 2013, 5, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Bakker, D.C.; Pfeil, B.; Landa, C.S.; Metzl, N.; O’brien, K.M.; Olsen, A.; Smith, K.; Cosca, C.; Harasawa, S.; Jones, S.D. A multi-decade record of high-quality fCO 2 data in version 3 of the Surface Ocean CO 2 Atlas (SOCAT). Earth Syst. Sci. Data 2016, 8, 383–413. [Google Scholar] [CrossRef] [Green Version]
- Körtzinger, A. Chap. Determination of carbon dioxide partial pressure (pCO2). In Methods of Seawater Analysis; WILEY: Hoboken, NJ, USA, 1999; pp. 149–158. [Google Scholar]
- Weiss, H.R. Control of myocardial oxygenation—Effect of atrial pacing. Microvasc. Res. 1974, 8, 362–376. [Google Scholar] [CrossRef] [PubMed]
- Olsen, A.; Key, R.M.; Van Heuven, S.; Lauvset, S.K.; Velo, A.; Lin, X.; Schirnick, C.; Kozyr, A.; Tanhua, T.; Hoppema, M. The Global Ocean Data Analysis Project version 2 (GLODAPv2)–an internally consistent data product for the world ocean. Earth Syst. Sci. Data 2016, 8, 297–323. [Google Scholar] [CrossRef]
- Olsen, A.; Lange, N.; Key, R.M.; Tanhua, T.; Bittig, H.C.; Kozyr, A.; Álvarez, M.; Azetsu-Scott, K.; Becker, S.; Brown, P.J. An updated version of the global interior ocean biogeochemical data product, GLODAPv2. 2020. Earth Syst. Sci. Data 2020, 12, 3653–3678. [Google Scholar] [CrossRef]
- Kim, M.-H.; Omar, A.H.; Tackett, J.L.; Vaughan, M.A.; Winker, D.M.; Trepte, C.R.; Hu, Y.; Liu, Z.; Poole, L.R.; Pitts, M.C. The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm. Atmos. Meas. Tech. 2018, 11, 6107–6135. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.; Hu, Y.; Bisson, K.; Lu, X.; Westberry, T. Retrieval of ocean optical and plankton properties with the satellite Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) sensor: Background, data processing, and validation status. Remote Sens. Environ. 2022, 281, 113235. [Google Scholar] [CrossRef]
- Lu, X.; Hu, Y.; Vaughan, M.; Rodier, S.; Omar, A. New attenuated backscatter profile by removing the CALIOP receiver’s transient response. J. Quant. Spectrosc. Radiat. Transf. 2020, 255, 107244. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; Hu, Y.; Hostetler, C.A.; Dall”Olmo, G.; Rodier, S.D.; Hair, J.W.; Trepte, C.R. Space-based lidar measurements of global ocean carbon stocks. Geophys. Res. Lett. 2013, 40, 4355–4360. [Google Scholar] [CrossRef]
- Bisson, K.M.; Boss, E.; Werdell, P.J.; Ibrahim, A.; Behrenfeld, M.J. Particulate Backscattering in the Global Ocean: A Comparison of Independent Assessments. Geophys. Res. Lett. 2021, 48, e2020GL090909. [Google Scholar] [CrossRef]
- Li, J.; Hu, Y.; Huang, J.; Stamnes, K.; Yi, Y.; Stamnes, S. A new method for retrieval of the extinction coefficient of water clouds by using the tail of the CALIOP signal. Atmos. Chem. Phys. 2011, 11, 2903–2916. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.; Hu, Y. Retrieving Aerosol Optical Depth and High Spatial Resolution Ocean Surface Wind Speed From CALIPSO: A Neural Network Approach. Front. Remote Sens. 2021, 1, 614029. [Google Scholar] [CrossRef]
- Meier, W.N.; Gallaher, D.; Campbell, G. New estimates of Arctic and Antarctic sea ice extent during September 1964 from recovered Nimbus I satellite imagery. Cryosphere 2013, 7, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Amari, S.-I.; Murata, N.; Muller, K.-R.; Finke, M.; Yang, H.H. Asymptotic statistical theory of overtraining and cross-validation. IEEE Trans. Neural Netw. 1997, 8, 985–996. [Google Scholar] [CrossRef]
- Ouyang, Z.; Qi, D.; Zhong, W.; Chen, L.; Gao, Z.; Lin, H.; Sun, H.; Li, T.; Cai, W.J. Summertime evolution of net community production and CO2 flux in the western Arctic Ocean. Glob. Biogeochem. Cycles 2021, 35, e2020GB006651. [Google Scholar] [CrossRef]
- Loose, B.; McGillis, W.R.; Perovich, D.; Zappa, C.J.; Schlosser, P. A parameter model of gas exchange for the seasonal sea ice zone. Ocean Sci. 2014, 10, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Butterworth, B.J.; Miller, S.D. Air-sea exchange of carbon dioxide in the Southern Ocean and Antarctic marginal ice zone. Geophys. Res. Lett. 2016, 43, 7223–7230. [Google Scholar] [CrossRef]
- Long, M.C.; Dunbar, R.B.; Tortell, P.D.; Smith, W.O.; Mucciarone, D.A.; DiTullio, G.R. Vertical structure, seasonal drawdown, and net community production in the Ross Sea, Antarctica. J. Geophys. Res. Ocean. 2011, 116, C10029. [Google Scholar] [CrossRef] [Green Version]
- Prytherch, J.; Brooks, I.M.; Crill, P.M.; Thornton, B.F.; Salisbury, D.J.; Tjernström, M.; Anderson, L.G.; Geibel, M.C.; Humborg, C. Direct determination of the air-sea CO2 gas transfer velocity in Arctic sea ice regions. Geophys. Res. Lett. 2017, 44, 3770–3778. [Google Scholar] [CrossRef]
- Loose, B.; McGillis, W.; Schlosser, P.; Perovich, D.; Takahashi, T. Effects of freezing, growth, and ice cover on gas transport processes in laboratory seawater experiments. Geophys. Res. Lett. 2009, 36, L05603. [Google Scholar] [CrossRef]
- Semiletov, I.; Makshtas, A.; Akasofu, S.I.; L Andreas, E. Atmospheric CO2 balance: The role of Arctic sea ice. Geophys. Res. Lett. 2004, 31, L05121. [Google Scholar] [CrossRef]
- Garbe, C.S.; Rutgersson, A.; Boutin, J.; Leeuw, G.d.; Delille, B.; Fairall, C.W.; Gruber, N.; Hare, J.; Ho, D.T.; Johnson, M.T. Transfer across the air-sea interface. In Ocean-Atmosphere Interactions of Gases and Particles; Springer: Berlin/Heidelberg, Germany, 2014; pp. 55–112. [Google Scholar]
- Kwiatkowski, L.; Orr, J.C. Diverging seasonal extremes for ocean acidification during the twenty-first century. Nat. Clim. Chang. 2018, 8, 141–145. [Google Scholar] [CrossRef] [Green Version]
- Gallego, M.; Timmermann, A.; Friedrich, T.; Zeebe, R.E. Drivers of future seasonal cycle changes in oceanic pCO 2. Biogeosciences 2018, 15, 5315–5327. [Google Scholar] [CrossRef] [Green Version]
- Pipko, I.; Semiletov, I.; Tishchenko, P.Y.; Pugach, S.; Savel’eva, N. Variability of the carbonate system parameters in the coast-shelf zone of the East Siberian Sea during the autumn season. Oceanology 2008, 48, 54–67. [Google Scholar] [CrossRef]
- Pipko, I.; Semiletov, I.; Pugach, S. The carbonate system of the East Siberian Sea waters. Dokl. Earth Sci./Doklady-Akademiia Nauk 2005, 402, 624–627. [Google Scholar]
- Semiletov, I.P.; Pipko, I.I.; Repina, I.; Shakhova, N.E. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere–ice–water interfaces in the Arctic Ocean: Pacific sector of the Arctic. J. Mar. Syst. 2007, 66, 204–226. [Google Scholar] [CrossRef]
- Semiletov, I.; Shakhova, N.; Pipko, I.; Pugach, S.; Charkin, A.; Dudarev, O.; Kosmach, D.; Nishino, S. Space–time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of the Laptev Sea. Biogeosciences 2013, 10, 5977–5996. [Google Scholar] [CrossRef] [Green Version]
- Pipko, I.; Semiletov, I.; Pugach, S.; Wåhlström, I.; Anderson, L. Interannual variability of air-sea CO 2 fluxes and carbon system in the East Siberian Sea. Biogeosciences 2011, 8, 1987–2007. [Google Scholar] [CrossRef] [Green Version]
- Qi, D.; Ouyang, Z.; Chen, L.; Wu, Y.; Lei, R.; Chen, B.; Feely, R.A.; Anderson, L.G.; Zhong, W.; Lin, H. Climate change drives rapid decadal acidification in the Arctic Ocean from 1994 to 2020. Science 2022, 377, 1544–1550. [Google Scholar] [CrossRef]
- Pabi, S.; van Dijken, G.L.; Arrigo, K.R. Primary production in the Arctic Ocean, 1998–2006. J. Geophys. Res. Ocean. 2008, 113, C08005. [Google Scholar] [CrossRef]
- Behrenfeld, M.J.; O’Malley, R.T.; Boss, E.S.; Westberry, T.K.; Graff, J.R.; Halsey, K.H.; Milligan, A.J.; Siegel, D.A.; Brown, M.B. Revaluating ocean warming impacts on global phytoplankton. Nat. Clim. Chang. 2016, 6, 323–330. [Google Scholar] [CrossRef]
- Westberry, T.; Behrenfeld, M.J.; Siegel, D.A.; Boss, E. Carbon-based primary productivity modeling with vertically resolved photoacclimation. Glob. Biogeochem. Cycles 2008, 22, GB2024. [Google Scholar] [CrossRef] [Green Version]
- Behrenfeld, M.J.; Gaube, P.; Della Penna, A.; O’malley, R.T.; Burt, W.J.; Hu, Y.; Bontempi, P.S.; Steinberg, D.K.; Boss, E.S.; Siegel, D.A. Global satellite-observed daily vertical migrations of ocean animals. Nature 2019, 576, 257–261. [Google Scholar] [CrossRef]
- Stramski, D.; Shalapyonok, A.; Reynolds, R.A. Optical characterization of the oceanic unicellular cyanobacterium Synechococcus grown under a day-night cycle in natural irradiance. J. Geophys. Res. Ocean. 1995, 100, 13295–13307. [Google Scholar] [CrossRef]
- DuRand, M.D.; Green, R.E.; Sosik, H.M.; Olson, R.J. Diel variations in optical properties of Micromonas pusilla (prasinophyceae) 1. J. Phycol. 2002, 38, 1132–1142. [Google Scholar] [CrossRef]
- Dall’Olmo, G.; Boss, E.; Behrenfeld, M.J.; Westberry, T.; Courties, C.; Prieur, L.; Pujo-Pay, M.; Hardman-Mountford, N.; Moutin, T. Inferring phytoplankton carbon and eco-physiological rates from diel cycles of spectral particulate beam-attenuation coefficient. Biogeosciences 2011, 8, 3423–3439. [Google Scholar] [CrossRef]
Components | Wavelength | Polarization | |
---|---|---|---|
1 | Ocean surface and subsurface LiDAR backscatter | 532 nm | Total |
3 | Ocean surface and subsurface LiDAR backscatter | 532 nm | Perpendicular |
5 | Ocean surface and subsurface LiDAR backscatter | 1064 nm | - |
2 | Column integrated atmospheric LiDAR backscatter | 532 nm | Total |
4 | Column integrated atmospheric LiDAR backscatter | 532 nm | Perpendicular |
6 | Column integrated atmospheric LiDAR backscatter | 1064 nm | - |
7 | Latitude | - | - |
Satellite and Reanalysis Environmental Datasets for Reconstructing Ocean Surface pCO2 and Air–Sea Carbon Flux | |||
---|---|---|---|
Component | Dataset | Temporal Scale | Website |
Sea surface temperature | CMEMS | Monthly | https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS (accessed on 10 September 2022) |
Sea surface salinity | |||
Sea surface height | |||
Mixed layer depth | |||
Chl-a | GlobColour | Monthly | https://www.globcolor.info/products_description.html (accessed on 10 September 2022) |
CALIPSO | Monthly/diurnal | CALIPSO retrievals | |
Atmospheric CO2 mole fraction | ECMWF | Monthly/diurnal | https://ads.atmosphere.copernicus.eu (accessed on 10 September 2022) |
Climatological pCO2 | Takahashi et al., 2009 | Monthly | - |
Satellite and reanalysis environmental datasets for reconstructing the air–sea Carbon flux | |||
10 m wind speed | CALIPSO | Monthly/diurnal | CALIPSO retrievals |
CCMP | Monthly | https://www.remss.com/measurements/ccmp/ (accessed on 10 September 2022) | |
Pressure | ECMWF | Monthly/diurnal | https://ads.atmosphere.copernicus.eu (accessed on 10 September 2022) |
Sea ice concentration | CMEMS | Monthly | https://resources.marine.copernicus.eu/product-detail/SST_GLO_SST_L4_REP_OBSERVATIONS_010_011/DATA-ACCESS (accessed on 10 September 2022) |
RMSE (μatm) | R2 | Bias (μatm) | Number | Original Coverage Area | |
---|---|---|---|---|---|
CMEMS | 31.22 | 0.64 | 0.27 | 12,402 | Global |
IBP | 29.36 | 0.68 | −1.21 | 15,445 | Global |
JMA | 26.71 | 0.63 | 1.01 | 6412 | Global |
IOCAS | 29.65 | 0.61 | −4.52 | 11,255 | Global |
FNN-LID | 25.59 | 0.75 | −0.14 | 10,266 | Global |
Yasunaka et al., 2016 | 32 | 0.8 | - | - | Arctic Ocean |
Yasunaka et al., 2018 | 30 | 0.82 | - | - | Arctic Ocean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Chen, P.; Zhang, Z.; Pan, D. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sens. 2022, 14, 6196. https://doi.org/10.3390/rs14246196
Zhang S, Chen P, Zhang Z, Pan D. Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sensing. 2022; 14(24):6196. https://doi.org/10.3390/rs14246196
Chicago/Turabian StyleZhang, Siqi, Peng Chen, Zhenhua Zhang, and Delu Pan. 2022. "Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020" Remote Sensing 14, no. 24: 6196. https://doi.org/10.3390/rs14246196
APA StyleZhang, S., Chen, P., Zhang, Z., & Pan, D. (2022). Carbon Air–Sea Flux in the Arctic Ocean from CALIPSO from 2007 to 2020. Remote Sensing, 14(24), 6196. https://doi.org/10.3390/rs14246196