Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Atmospheric Absorption Models
2.2. Microwave and Radiosonde Observations
- (1)
- LWP measured by HATPRO less than 25 g/m2;
- (2)
- a standard deviation of brightness temperature at 31.4 GHz frequency of no more than 0.5 K [34].
3. Results and Discussion
3.1. Results of Simulation
- (1)
- MPM1: the MPM, taking into account the first-order mixing [26].
- (2)
- (3)
- ECS: the model including the oxygen band contribution calculated in the ECS approximation and the contribution of other components (in particular, the continuum and the water-vapor absorption spectrum) that are taken from the MPM.
3.2. Accuracy of the Results
3.3. Spectral Difference with High Spectral Resolution
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, P.W. Performance and application of a multiwavelength, ground-based microwave radiometer in intense convective weather. Meteorol. Z. 2009, 18, 253–265. [Google Scholar] [CrossRef]
- Chan, P.W.; Hon, K.K. Application of ground-based, multichannel microwave radiometer in the nowcasting of intense convective weather through instability indices of the atmosphere. Meteorol. Z. 2011, 20, 431–440. [Google Scholar] [CrossRef]
- Madhulatha, A.; Rajeevan, M.; Venkat Ratnam, M.; Bhate, J.; Naidu, C.V. Nowcasting severe convective activity over southeast India using ground-based microwave radiometer observations. J. Geophys. Res. Atmos. 2013, 118, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Venkat Ratnam, M.; Durga Santhi, Y.; Rajeevan, M.; Vijaya Bhaskara Rao, S. Diurnal variability of stability indices observed using radiosonde observations over a tropical station: Comparison with microwave radiometer measurements. Atmos. Res. 2013, 124, 21–33. [Google Scholar] [CrossRef]
- Cimini, D.; Rizi, V.; Di Girolamo, P.; Marzano, F.S.; Macke, A.; Pappalardo, G.; Richter, A. Overview: Tropospheric profiling: State of the art and future challenges—Introduction to the AMT special issue. Atmos. Meas. Technol. 2014, 7, 2981–2986. [Google Scholar] [CrossRef]
- Cimini, D.; Nelson, M.; Güldner, J.; Ware, R. Forecast indices from a ground-based microwave radiometer for operational meteorology. Atmos. Meas. Technol. 2015, 8, 315–333. [Google Scholar] [CrossRef] [Green Version]
- Kulikov, M.Y.; Belikovich, M.V.; Skalyga, N.K.; Shatalina, M.V.; Dementyeva, S.O.; Ryskin, V.G.; Shvetsov, A.A.; Krasil’nikov, A.A.; Serov, E.A.; Feigin, A.M. Skills of Thunderstorm Prediction by Convective Indices over a Metropolitan Area: Comparison of Microwave and Radiosonde Data. Remote Sens. 2020, 12, 604. [Google Scholar] [CrossRef] [Green Version]
- Isaac, G.A.; Bailey, M.; Boudala, F.S.; Burrows, W.R.; Cober, S.G.; Crawford, R.W.; Donaldson, N.; Gultepe, I.; Hansen, B.; Heckman, I.; et al. The Canadian Airport Nowcasting System (CAN-Now). Meteorol. Appl. 2014, 21, 30–49. [Google Scholar] [CrossRef]
- Güldner, J. A model-based approach to adjust microwave observations for operational applications: Results of a campaign at Munich Airport in winter 2011/2012. Atmos. Meas. Technol. 2013, 6, 2879–2891. [Google Scholar] [CrossRef] [Green Version]
- Ware, R.; Cimini, D.; Campos, E.; Giuliani, G.; Albers, S.; Nelson, M.; Koch, S.E.; Joe, P.; Cober, S. Thermodynamic and liquid profiling during the 2010 Winter Olympics. Atmos. Res. 2013, 132–133, 278–290. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Shape of the 5 mm oxygen band in the atmosphere. IEEE Trans. Antennas Propagat. 1975, 23, 498–506. [Google Scholar] [CrossRef]
- Liebe, H.; Grimmestad, G.; Hopponen, J. Atmospheric oxygen microwave spectrum—Experiment versus theory. IEEE Trans. Antennas Propagat. 1977, 25, 327–335. [Google Scholar] [CrossRef]
- Liebe, H.J.; Rosenkranz, P.W.; Hufford, G.A. Atmospheric 60-GHz oxygen spectrum: New laboratory measurements and line parameters. J. Quant. Spectrosc. Radiat. Transfer. 1992, 48, 629–643. [Google Scholar] [CrossRef]
- Liebe, H.J. MPM—An atmospheric millimeter-wave propagation model. Int. J. Infrared Millim. Waves 1989, 10, 631–650. [Google Scholar] [CrossRef]
- Tretyakov, M.Y.; Koshelev, M.A.; Dorovskikh, V.V.; Makarov, D.S.; Rosenkranz, P.W. 60-GHz Oxygen Band: Precise broadening and central frequencies of fine-structure lines, absolute absorption profile at atmospheric pressure, and revision of mixing coefficients. J. Mol. Spectrosc. 2005, 231, 1–14. [Google Scholar] [CrossRef]
- Cimini, D.; Rosenkranz, P.W.; Tretyakov, M.Y.; Koshelev, M.A.; Romano, F. Uncertainty of atmospheric microwave absorption model: Impact on ground-based radiometer simulations and retrieval. Atmos. Chem. Phys. 2018, 18, 15231–15259. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J.; Meissner, T. Atmospheric absorptionmodel for dry air and watervapor at microwave frequencies below 100GHz derived from spaceborne radiometer observations. Radio Sci. 2018, 51, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Belikovich, M.V.; Kulikov, M.Y.; Makarov, D.S.; Skalyga, N.K.; Ryskin, V.G.; Shvetsov, A.A.; Krasil’nikov, A.A.; Dementyeva, S.O.; Serov, E.A.; Feigin, A.M. Long-term observations of microwave brightness temperatures over a metropolitan area: Comparison of radiometric data and spectra simulated with the use of radiosonde measurements. Remote Sens. 2021, 13, 2061. [Google Scholar] [CrossRef]
- Makarov, D.S.; Tretyakov, M.Y.; Boulet, C. Line Mixing in the 60-GHz Atmospheric Oxygen Band: Comparison of the MPM and ECS Model. J. Quant. Spectrosc. Radiat. Transf. 2013, 124, 1–10. [Google Scholar] [CrossRef]
- Makarov, D.S.; Tretyakov, M.Y.; Rosenkranz, P.W. Revision of the 60-GHz atmospheric oxygen absorption band models for practical use. J. Quant. Spectrosc. Radiat. Transfer. 2020, 243, 106798. [Google Scholar] [CrossRef]
- Gordon, R.G. Semiclassical theory of spectra and relaxation in molecular gases. J. Chem. Phys. 1966, 45, 1649–1655. [Google Scholar] [CrossRef]
- Lam, K.S. Application of pressure broadening theory to the calculation of atmospheric oxygen and water vapor microwave absorption. J. Quant. Spectrosc. Radiat. Transfer. 1977, 17, 351–383. [Google Scholar] [CrossRef]
- Tran, H.; Boulet, C.; Hartmann, J.-M. Line mixing and collision-induced absorption by oxygen in the A-band: Laboratory measurements, model, and tools for atmospheric spectra computations. J. Geophys. Res. 2006, 111, D15210. [Google Scholar] [CrossRef] [Green Version]
- Twomey, S. On the numerical solution of Fredholm integral equations of the first kind by the inversion of the linear system produced by quadrature. J. Assoc. Comput. Mach. 1963, 10, 97–101. [Google Scholar] [CrossRef]
- Koshelev, M.A.; Vilkov, I.N.; Tretyakov, M.Y. Collisional broadening of oxygen fine structure lines: The impact of temperature. J. Quant. Spectrosc. Rad. Transf. 2016, 169, 91–95. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Line-by-Line Microwave Radiative Transfer (Non-Scattering). Remote Sens. Code Library. Available online: http://cetemps.aquila.infn.it/mwrnet/lblmrt_ns.html (accessed on 15 August 2022).
- DePristo, A.E.; Augustin, S.D.; Ramaswamy, R.; Rabitz, H. Quantum number and energy scaling for nonreactive collisions. J. Chem. Phys. 1979, 71, 850–865. [Google Scholar] [CrossRef]
- Niro, F.; Boulet, C.; Hartmann, J.-M. Spectra calculations in central and wing region of CO2 IR bands between 10 and 20 μm. I: Model and laboratory measurements. J. Quant. Spectrosc. Radiat. Transf. 2004, 88, 483–498. [Google Scholar] [CrossRef]
- Rosenkranz, P.W. Absorption of microwaves by atmospheric gases. In Atmospheric Remote Sensing by Microwave Radiometry; Janssen, M.A., Ed.; John Wiley & Sons: New York, NY, USA, 1993; pp. 37–90. [Google Scholar]
- Instrument Operation and Software Guide. Available online: http://www.radiometer-physics.de/download/PDF/Radiometers/HATPRO/RPG_MWR_STD_Software_Manual%20G5.pdf (accessed on 15 August 2022).
- Technical Instrument Manual. Available online: http://www.radiometer-physics.de//downloadftp/pub/PDF/Radiometers/General_documents/Manuals/2015/RPG_MWR_STD_Technical_Manual_2015.pdf (accessed on 15 August 2022).
- LLC “AEROPRIBOR”. Available online: http://zondr.ru/development-product/10-ak-2.html (accessed on 15 August 2022).
- Picone, J.M.; Hedin, A.E.; Drob, D.P.; Aikin, A.C. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. 2002, 107, 1468. [Google Scholar] [CrossRef]
- De Angelis, F.; Cimini, D.; Löhnert, U.; Caumont, O.; Haefele, A.; Pospichal, B.; Martinet, P.; Navas-Guzmán, F.; Klein-Baltink, H.; Dupont, J.-C.; et al. Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network. Atmos. Meas. Technol. 2017, 10, 3947–3961. [Google Scholar] [CrossRef] [Green Version]
- Meunier, V.; Löhnert, U.; Kollias, P.; Crewell, D. Biases cause by the instrument bandwidth and beam width on simulated brightness temperature measurements from scanning microwave radiometers. Atmos. Meas Technol. 2013, 6, 1171–1187. [Google Scholar] [CrossRef]
Channel (GHz) | 51.26 | 52.28 | 53.86 | 54.94 | 56.66 | 57.3 | 58 |
---|---|---|---|---|---|---|---|
[K/°C] | −0.073 | 0.21 | 0.87 | 0.96 | 0.98 | 0.98 | 0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belikovich, M.V.; Makarov, D.S.; Serov, E.A.; Kulikov, M.Y.; Feigin, A.M. Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism. Remote Sens. 2022, 14, 6042. https://doi.org/10.3390/rs14236042
Belikovich MV, Makarov DS, Serov EA, Kulikov MY, Feigin AM. Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism. Remote Sensing. 2022; 14(23):6042. https://doi.org/10.3390/rs14236042
Chicago/Turabian StyleBelikovich, Mikhail V., Dmitriy S. Makarov, Evgeny A. Serov, Mikhail Yu. Kulikov, and Alexander M. Feigin. 2022. "Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism" Remote Sensing 14, no. 23: 6042. https://doi.org/10.3390/rs14236042
APA StyleBelikovich, M. V., Makarov, D. S., Serov, E. A., Kulikov, M. Y., & Feigin, A. M. (2022). Validation of Atmospheric Absorption Models within the 20–60 GHz Band by Simultaneous Radiosonde and Microwave Observations: The Advantage of Using ECS Formalism. Remote Sensing, 14(23), 6042. https://doi.org/10.3390/rs14236042