Improved Spatiotemporal Information Fusion Approach Based on Bayesian Decision Theory for Land Cover Classification
Abstract
:1. Introduction
2. Methodology
2.1. Instruction on the Bayesian Decision Fusion
2.2. General Fusion Workflow
2.3. Details of the Proposed Bayesian Fusion Method
2.3.1. General Formulation of PBF
2.3.2. Detailed Flowchart of PBF
2.3.3. Parameter Acquisition
- Spatial unification and object areal proportion;
- 2.
- Classification for single-source data;
- 3.
- Class-wise accuracy assessment for ensemble weighting;
- 4.
- Class-wise accuracy assessment for ensemble weighting;
3. Materials and Experiments
3.1. Comparisons on the Benchmark Dataset
3.1.1. Datasets Description
3.1.2. Preprocessing
3.2. Application on a Large Area
3.2.1. Study Area
3.2.2. Data and Preprocessing
4. Results
4.1. Fusion Results of the Benchmark Dataset
4.1.1. Main Parameters of PBF
- Area proportion for each class k
- 2.
- Classification membership of MODIS data and Landsat data
- 3.
- Classification accuracy and uncertainty assessment parameters
4.1.2. Fusion and Classification Results of the ESTARFM and PBF Methods
4.1.3. Accuracy Assessments and Comparisons
4.2. Fusion Result of the Mun River Basin
4.2.1. Classification Results and Comparison of Different Methods
4.2.2. Error Matrix Analysis in PBF
5. Discussion
5.1. Errors from Preclassification Results
5.2. Comparison with a Decision Fusion Method
5.3. Possible Improvement
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Area proportion for each class k
Class (k) | Confidence Interval (95% Level) | |
---|---|---|
Grass Land | 4.08 | [3.958, 4.202] |
Evergreen Forest | 6.18 | [6.027, 6.333] |
Urban and Construction Land | 6.04 | [6.007, 6.073] |
Dry Land | 19.37 | [18.542, 20.198] |
Deciduous Forest | 6.08 | [5.882, 6.278] |
Others | 0.66 | [0.648, 0.672] |
Artificial Forest | 0.86 | [0.840, 0.880] |
Wetland | 0.95 | [0.934, 0.966] |
Water | 3.08 | [3.001, 3.159] |
Paddy Rice | 52.70 | [51.021, 54.379] |
- 2.
- Classification membership of MODIS data and Landsat data
- 3.
- Classification accuracy and uncertainty assessment parameters
Class-Wise Accuracy (Landsat) | Class-Wise Accuracy (MODIS) | |
---|---|---|
Grass Land | 0.03 | 0.08 |
Evergreen Forest | 0.56 | 0.79 |
Urban and Construction Land | 0.21 | 0.09 |
Dry Land | 0.41 | 0.31 |
Deciduous Forest | 0.23 | 0.26 |
Others | 0.06 | 0.01 |
Artificial Forest | 0.10 | 0.08 |
Wetland | 0.05 | 0.11 |
Water | 0.32 | 0.24 |
Paddy Rice | 0.73 | 0.73 |
GS 1 | EF 2 | AL 3 | DL 4 | DF 5 | OT 6 | AF 7 | WL 8 | WT 9 | PR 10 | |
---|---|---|---|---|---|---|---|---|---|---|
0–10 | 0.07 | 0.66 | 0.07 | 0.25 | 0.22 | 0.00 | 0.07 | 0.09 | 0.20 | 0.61 |
0–20 | 0.07 | 0.65 | 0.07 | 0.25 | 0.22 | 0.00 | 0.07 | 0.09 | 0.20 | 0.60 |
20–30 | 0.07 | 0.69 | 0.08 | 0.27 | 0.23 | 0.00 | 0.07 | 0.10 | 0.21 | 0.64 |
30–40 | 0.08 | 0.74 | 0.08 | 0.29 | 0.24 | 0.00 | 0.07 | 0.10 | 0.22 | 0.68 |
40–50 | 0.08 | 0.74 | 0.08 | 0.29 | 0.24 | 0.00 | 0.07 | 0.10 | 0.22 | 0.68 |
50–60 | 0.10 | 0.94 | 0.10 | 0.37 | 0.31 | 0.01 | 0.10 | 0.13 | 0.28 | 0.87 |
60–70 | 0.10 | 0.91 | 0.10 | 0.35 | 0.30 | 0.01 | 0.09 | 0.13 | 0.27 | 0.84 |
70–80 | 0.09 | 0.81 | 0.09 | 0.32 | 0.27 | 0.01 | 0.08 | 0.11 | 0.24 | 0.75 |
80–90 | 0.11 | 1.08 | 0.12 | 0.42 | 0.36 | 0.01 | 0.11 | 0.15 | 0.32 | 1.00 |
90–100 | 0.12 | 1.11 | 0.12 | 0.43 | 0.36 | 0.01 | 0.11 | 0.15 | 0.33 | 1.02 |
References
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A Review of Supervised Object-based Land-cover Image Classification. ISPRS J. Photogramm. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical Remotely Sensed Time Series Data for Land Cover Classification: A Review. ISPRS J. Photogramm. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Löw, F.; Conrad, C.; Michel, U. Decision Fusion and Non-parametric Classifiers for Land Use Mapping Using Multi-temporal RapidEye Data. ISPRS J. Photogramm. 2015, 108, 191–204. [Google Scholar] [CrossRef]
- Chen, B.; Huang, B.; Xu, B. Multi-source Remotely Sensed Data Fusion for Improving Land Cover Classification. ISPRS J. Photogramm. 2017, 124, 27–39. [Google Scholar] [CrossRef]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J.G. An Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model for Complex Heterogeneous Regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Markham, B.L.; Storey, J.C.; Williams, D.L.; Irons, J.R. Landsat Sensor Performance: History and Current Status. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2691–2694. [Google Scholar] [CrossRef]
- Miettinen, J.; Stibig, H.-J.; Achard, F. Remote Sensing of Forest Degradation in Southeast Asia—Aiming for A Regional View Through 5–30 m Satellite Data. Glob. Ecol. Conserv. 2014, 2, 24–36. [Google Scholar] [CrossRef]
- Tarnavsky, E.; Garrigues, S.; Brown, M.E. Multiscale Geostatistical Analysis of AVHRR, SPOT-VGT, and MODIS Global NDVI Products. Remote Sens. Environ. 2008, 112, 535–549. [Google Scholar] [CrossRef]
- Xue, J.; Leung, Y.; Fung, T. A Bayesian Data Fusion Approach to Spatio-Temporal Fusion of Remotely Sensed Images. Remote Sens. 2017, 9, 1310. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Li, Y.; He, L.; Chen, J.; Plaza, A. Spatio-temporal Fusion for Remote Sensing Data: An Overview and New Benchmark. Sci. China Inform. Sci. 2020, 63, 140301. [Google Scholar] [CrossRef]
- Tang, Y.; Wang, Q.; Zhang, K.; Atkinson, P.M. Quantifying the Effect of Registration Error on Spatio-Temporal Fusion. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 487–503. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, J.; He, L.; Chen, J.; Plaza, A. A New Sensor Bias-driven Spatio-temporal Fusion Model Based on Convolutional Neural Networks. Sci. China Inform. Sci. 2020, 63, 140302. [Google Scholar] [CrossRef] [Green Version]
- Feng, G.; Masek, J.; Schwaller, M.; Hall, F. On the Blending of The Landsat and MODIS Surface Reflectance: Predicting Daily Landsat Surface Reflectance. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2207–2218. [Google Scholar] [CrossRef]
- Zhu, X.; Helmer, E.H.; Gao, F.; Liu, D.; Chen, J.; Lefsky, M.A. A Flexible Spatiotemporal Method for Fusing Satellite Images with Different Resolutions. Remote Sens. Environ. 2016, 172, 165–177. [Google Scholar] [CrossRef]
- Liu, M.; Liu, X.; Wu, L.; Zou, X.; Jiang, T.; Zhao, B. A Modified Spatiotemporal Fusion Algorithm Using Phenological Information for Predicting Reflectance of Paddy Rice in Southern China. Remote Sens. 2018, 10, 772. [Google Scholar] [CrossRef] [Green Version]
- Zhukov, B.; Oertel, D.; Lanzl, F.; Reinhackel, G. Unmixing-based Multisensor Multiresolution Image Fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1212–1226. [Google Scholar] [CrossRef]
- Maselli, F.; Rembold, F. Integration of LAC and GAC NDVI Data to Improve Vegetation Monitoring in Semi-arid Environments. Int. J. Remote Sens. 2002, 23, 2475–2488. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, H. Spatio-temporal Reflectance Fusion Via Unmixing: Accounting for Both Phenological and Land-cover Changes. Int. J. Remote Sens. 2014, 35, 6213–6233. [Google Scholar] [CrossRef]
- Li, W.; Cao, D.; Peng, Y.; Yang, C. MSNet: A Multi-Stream Fusion Network for Remote Sensing Spatiotemporal Fusion Based on Transformer and Convolution. Remote Sens. 2021, 13, 3724. [Google Scholar] [CrossRef]
- Song, H.; Liu, Q.; Wang, G.; Hang, R.; Huang, B. Spatiotemporal Satellite Image Fusion Using Deep Convolutional Neural Networks. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens 2018, 11, 821–829. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, K.; Ge, Y.; Zhou, Y. Spatiotemporal Remote Sensing Image Fusion Using Multiscale Two-stream Convolutional Neural Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4402112. [Google Scholar] [CrossRef]
- Geng, T.; Zheng, F.; Hou, X.; Lu, K.; Qi, G.; Shao, L. Spatial-Temporal Pyramid Graph Reasoning for Action Recognition. IEEE Trans. Image Process. 2022, 31, 5484–5497. [Google Scholar] [CrossRef]
- Jia, Z.; Lin, Y.; Wang, J.; Ning, X.; He, Y.; Zhou, R.; Zhou, Y.; Lehman, L. Multi-view Spatial-Temporal Graph Convolutional Networks with Domain Generalization for Sleep Stage Classification. IEEE Trans. Neur. Sys. Reh. 2021, 29, 1977–1986. [Google Scholar] [CrossRef]
- Che, J.; Wang, L.; Bai, X.; Liu, C.; Zhou, F. Spatial-Temporal Hybrid Feature Extraction Network for Few-shot Automatic Modulation Classification. IEEE Trans. Veh. Technol. 2022. [Google Scholar] [CrossRef]
- Pohl, C.; Van Genderen, J.L. Review Article Multisensor Image Fusion in Remote Sensing: Concepts, Methods and Applications. Int. J. Remote Sens. 1998, 19, 823–854. [Google Scholar] [CrossRef] [Green Version]
- Petrakos, M.; Benediktsson, J.A.; Kanellopoulos, I. The Effect of Classifier Agreement on the Accuracy of the Combined Classifier in Decision Level Fusion. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2539–2546. [Google Scholar] [CrossRef] [Green Version]
- Penza, M.; Cassano, G. Application of Principal Component Analysis and Artificial Neural Networks to Recognize the Individual VOCs of Methanol/2-propanol in a Binary Mixture by SAW Multi-sensor Array. Sens. Actuat. B Chem. 2003, 89, 269–284. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Swain, P.H.; Ersoy, O.K. Conjugate-gradient Neural Networks in Classification of Multisource and Very-high-dimensional Remote Sensing Data. Int. J. Remote Sens. 1993, 14, 2883–2903. [Google Scholar] [CrossRef]
- Giacinto, G.; Roli, F. Design of Effective Neural Network Ensembles for Image Classification Purposes. Image Vision Comput. 2001, 19, 699–707. [Google Scholar] [CrossRef]
- Waske, B.; Braun, M. Classifier Ensembles for Land Cover Mapping Using Multitemporal SAR Imagery. ISPRS J. Photogramm. 2009, 64, 450–457. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Kanellopoulos, I. Classification of Multisource and Hyperspectral Data Based on Decision Fusion. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.H.; Park, D. An Efficient Algorithm for Fuzzy Weighted Average. Fuzzy Set. Syst. 1997, 87, 39–45. [Google Scholar] [CrossRef]
- Basir, O.; Yuan, X. Engine Fault Diagnosis Based on Multi-sensor Information Fusion Using Dempster–Shafer Evidence Theory. Inform. Fusion 2007, 8, 379–386. [Google Scholar] [CrossRef]
- Wang, J.; Li, C.; Gong, P. Adaptively Weighted Decision Fusion in 30m Land-cover Mapping with Landsat and MODIS Data. Int. J. Remote Sens. 2015, 36, 3659–3674. [Google Scholar] [CrossRef]
- Meurant, G. Data Fusion in Robotics & Machine Intelligence; Academic Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Decision Fusion for the Classification of Urban Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2828–2838. [Google Scholar] [CrossRef]
- Frigui, H.; Zhang, L.; Gader, P.; Wilson, J.N.; Ho, K.C.; Mendez-Vazquez, A. An Evaluation of Several Fusion Algorithms for Anti-tank Landmine Detection and Discrimination. Inform. Fusion 2012, 13, 161–174. [Google Scholar] [CrossRef]
- Yue, D.; Guo, M.; Chen, Y.; Huang, Y. A Bayesian Decision Fusion Approach for MicroRNA Target Prediction. BMC Genomics 2012, 13, S13. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Zhang, Z.; Xiong, D.; Du, J.; Liao, M. Spatio-Temporal Series Remote Sensing Image Prediction Based on Multi-Dictionary Bayesian Fusion. ISPRS Int. J. Geo-Inf. 2017, 6, 374. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.; Wang, B.; Zhang, L. Remote Sensing Image Fusion Based on Bayesian Linear Estimation. Sci. China Ser. F. 2007, 50, 227–240. [Google Scholar] [CrossRef]
- Peter, D.G.; Dawid, A.P. Game theory, Maximum Entropy, Minimum Discrepancy and Robust Bayesian Decision Theory. Ann. Stat. 2004, 32, 1367–1433. [Google Scholar] [CrossRef]
- Ding, J.H.; Zhang, Z.Q. Bayesian Statistical Models with Uncertainty Variables. J Intell. Fuzzy Syst. 2020, 39, 1109–1117. [Google Scholar] [CrossRef]
- Kuncheva, L.I.; Rodríguez, J.J. A Weighted Voting Framework for Classifiers Ensembles. Knowl. Inf. Syst. 2014, 38, 259–275. [Google Scholar] [CrossRef]
- Deli, I.; Çağman, N. Intuitionistic Fuzzy Parameterized Soft Set Theory and Its Decision Making. Appl. Soft Comput. 2015, 28, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Binaghi, E.; Brivio, P.A.; Ghezzi, P.; Rampini, A. A Fuzzy Set-based Accuracy Assessment of Soft Classification. Pattern Recogn. Lett. 1999, 20, 935–948. [Google Scholar] [CrossRef]
- Batuwita, R.; Palade, V. FSVM-CIL: Fuzzy Support Vector Machines for Class Imbalance Learning. IEEE Trans. Fuzzy Syst. 2010, 18, 558–571. [Google Scholar] [CrossRef]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Coppin, P. A Comparison of Time Series Similarity Measures for Classification and Change Detection of Ecosystem Dynamics. Remote Sens. Environ. 2011, 115, 3129–3152. [Google Scholar] [CrossRef]
- Hong, D.H.; Hwang, C.H. Support Vector Fuzzy Regression Machines. Fuzzy Sets Syst. 2003, 138, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Huang, C.; Yang, J.; Li, A. Remote Sensing Image Classification with a Graph-based Pre-trained Neighborhood Spatial Relationship. Sensors 2021, 21, 5602. [Google Scholar] [CrossRef]
- Guan, X.; Liu, G.; Huang, C.; Liu, Q.; Wu, C.; Jin, Y.; Li, Y. An Object-Based Linear Weight Assignment Fusion Scheme to Improve Classification Accuracy Using Landsat and MODIS Data at the Decision Level. IEEE Trans. Geosci. Remote Sens. 2017, 55, 6989–7002. [Google Scholar] [CrossRef]
- Foody, G.M. Sharpening Fuzzy Classification Output to Refine the Representation of Sub-pixel Land Cover Distribution. Int. J Remote Sens. 1998, 19, 2593–2599. [Google Scholar] [CrossRef]
- Pal, N.R.; Bezdek, J.C. Measuring Fuzzy Uncertainty. IEEE Trans. Fuzzy Syst. 1994, 2, 107–118. [Google Scholar] [CrossRef]
- Hird, J.N.; McDermid, G.J. Noise reduction of NDVI time series: An Empirical Comparison of Selected Techniques. Remote Sens. Environ. 2009, 113, 248–258. [Google Scholar] [CrossRef]
- Jönsson, P.; Eklundh, L. TIMESAT—A Program for Analyzing Time-series of Satellite Sensor Data. Comput. Geosci. 2004, 30, 833–845. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.; Qin, Z.; Cui, X.; Yang, F.; Yasir, M.; Ma, B.; Liu, X. MBES Seabed Sediment Classification Based on a Decision Fusion Method Using Deep Learning Model. Remote Sens. 2022, 14, 3708. [Google Scholar] [CrossRef]
- Sun, G.; Huang, H.; Zhang, A.; Li, F.; Zhao, H.; Fu, H. Fusion of multiscale convolutional neural networks for building extraction in very high-resolution images. Remote Sens. 2019, 11, 227. [Google Scholar] [CrossRef] [Green Version]
- Waske, B.; Van, D. Classifying multilevel imagery from SAR and optical sensors by decision fusion. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1457–1466. [Google Scholar] [CrossRef]
- Li, Y.; Deng, T.; Fu, B.; Lao, Z.; Yang, W.; He, H.; Fan, D.; He, W.; Yao, Y. Evaluation of Decision Fusions for Classifying Karst Wetland Vegetation Using One-Class and Multi-Class CNN Models with High-Resolution UAV Images. Remote Sens. 2022, 14, 5869. [Google Scholar] [CrossRef]
Class (k) | Confidence Interval (95% Level) | |
---|---|---|
Construction Land | 2.5 | [2.478, 2.522] |
Crop1 | 19.6 | [18.962, 20.238] |
Crop2 | 25.9 | [22.875, 28.925] |
Gobi | 12.2 | [10.773, 13.627] |
Grass land | 13.2 | [12.207, 14.193] |
Slope field | 14.9 | [13.788, 16.012] |
Wasteland | 10.1 | [9.160, 11.040] |
Water | 1.6 | [1.435, 1.765] |
Class-Wise Accuracy (Landsat) | Class-Wise Accuracy (MODIS) | |
---|---|---|
Construction Land | 0.92 | 0.14 |
Crop1 | 0.75 | 0.77 |
Crop2 | 0.44 | 0.60 |
Gobi | 0.81 | 0.59 |
Grassland | 0.43 | 0.41 |
Slope filed | 0.62 | 0.13 |
Wasteland | 0.40 | 0.36 |
Water | 0.97 | 0.44 |
CL 1 | C1 2 | C2 3 | GB 4 | GL 5 | SF 6 | WL 7 | WT 8 | |
---|---|---|---|---|---|---|---|---|
0–10 | 0.08 | 0.13 | 0.18 | 0.24 | 0.22 | 0.06 | 0.05 | 0.05 |
0–20 | 0.10 | 0.18 | 0.24 | 0.31 | 0.29 | 0.08 | 0.07 | 0.07 |
20–30 | 0.14 | 0.24 | 0.32 | 0.43 | 0.39 | 0.11 | 0.09 | 0.09 |
30–40 | 0.19 | 0.33 | 0.45 | 0.59 | 0.54 | 0.16 | 0.13 | 0.12 |
40–50 | 0.16 | 0.27 | 0.36 | 0.47 | 0.43 | 0.13 | 0.10 | 0.10 |
50–60 | 0.08 | 0.13 | 0.18 | 0.24 | 0.22 | 0.06 | 0.05 | 0.05 |
60–70 | 0.14 | 0.25 | 0.33 | 0.44 | 0.40 | 0.12 | 0.09 | 0.09 |
70–80 | 0.08 | 0.13 | 0.18 | 0.24 | 0.22 | 0.06 | 0.05 | 0.05 |
80–90 | 0.21 | 0.35 | 0.47 | 0.63 | 0.57 | 0.17 | 0.13 | 0.13 |
90–100 | 0.22 | 0.38 | 0.51 | 0.67 | 0.62 | 0.18 | 0.14 | 0.14 |
LC1 | LC2 | LC3 | LC4 | LC5 | |
---|---|---|---|---|---|
Construction land | 0.92 | 0.14 | 0.96 | 0.95 | 0.23 |
Crop1 | 0.75 | 0.77 | 0.96 | 0.73 | 0.72 |
Crop2 | 0.44 | 0.60 | 0.64 | 0.53 | 0.61 |
Gobi | 0.81 | 0.59 | 0.86 | 0.82 | 0.62 |
Grassland | 0.43 | 0.41 | 0.43 | 0.40 | 0.41 |
Slope field | 0.62 | 0.13 | 0.57 | 0.62 | 0.43 |
Wasteland | 0.40 | 0.36 | 0.42 | 0.39 | 0.32 |
Water | 0.97 | 0.44 | 0.96 | 0.97 | 0.34 |
Overall accuracy | 0.689 | 0.425 | 0.745 | 0.719 | 0.537 |
AF 1 | DF 2 | DL 3 | EF 4 | GL 5 | OT 6 | PR 7 | AL 8 | WT 9 | WL 10 | OA | |
---|---|---|---|---|---|---|---|---|---|---|---|
LC1 | 9.60 | 22.65 | 41.20 | 55.90 | 3.25 | 6.25 | 73.21 | 20.74 | 32.47 | 4.84 | 52.56 |
LC2 | 8.00 | 26.19 | 30.80 | 79.41 | 8.31 | 0.53 | 73.22 | 8.72 | 23.76 | 11.11 | 48.10 |
LC3 | 0.00 | 22.73 | 56.84 | 41.18 | 5.88 | 0.00 | 77.60 | 9.52 | 28.57 | 13.33 | 57.23 |
LC4 | 11.32 | 25.73 | 39.35 | 68.52 | 8.99 | 7.53 | 74.26 | 28.46 | 30.60 | 10.22 | 54.23 |
LC5 | 7.52 | 21.26 | 31.65 | 60.62 | 6.23 | 5.69 | 73.61 | 10.26 | 30.33 | 8.28 | 53.67 |
Manually Labeled | MODIS | Landsat | PBF Result | Membership of Labeled Type (Landsat) | Membership of Labeled Type (MODIS) |
---|---|---|---|---|---|
AF | OT | DF | OT | 0 | 0 |
DF | WL | DF | GL | 0.985174 | 0 |
DL | DF | EF | EF | 0.973132 | 0.023427 |
EF | PR | DF | PR | 0 | 0.0867 |
GL | OT | PR | AL | 0 | 0.180617 |
OT | OT | AF | AL | 0 | 0.039621 |
PR | PR | PR | WT | 0.993007 | 0.997983 |
AL | GL | DF | DF | 0 | 0.742504 |
WT | PR | WL | WL | 0 | 0 |
WL | PR | DL | PR | 0.924568 | 0.569142 |
AF | DF | DL | EF | GL | OT | PR | AL | WT | WL | OA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Landsat | 9.60 | 22.65 | 41.20 | 55.90 | 3.25 | 6.25 | 73.21 | 20.74 | 32.47 | 4.84 | 52.56 |
MODIS | 8.00 | 26.19 | 30.80 | 79.41 | 8.31 | 0.53 | 73.22 | 8.72 | 23.76 | 11.11 | 48.10 |
CBDF | 0.00 | 18.03 | 46.57 | 42.05 | 3.67 | 0.00 | 76.85 | 8.67 | 26.09 | 9.23 | 54.44 |
PBF | 0.00 | 22.73 | 56.84 | 41.18 | 5.88 | 0.00 | 77.60 | 9.52 | 28.57 | 13.33 | 57.23 |
AF | DF | DL | EF | GL | OT | PR | AL | WT | WL | OA | |
---|---|---|---|---|---|---|---|---|---|---|---|
Landsat | 9.60 | 22.65 | 41.20 | 55.90 | 3.25 | 6.25 | 73.21 | 20.74 | 32.47 | 4.84 | 52.56 |
MODIS | 8.00 | 26.19 | 30.80 | 79.41 | 8.31 | 0.53 | 73.22 | 8.72 | 23.76 | 11.11 | 48.10 |
PBF (product) | 0.00 | 20.00 | 33.03 | 65.22 | 9.52 | 0.00 | 77.59 | 7.69 | 33.33 | 0.00 | 59.29 |
PBF (conjunction) | 0.00 | 22.73 | 56.84 | 41.18 | 5.88 | 0.00 | 77.60 | 9.52 | 28.57 | 13.33 | 57.23 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Guan, X.; Ge, Y.; Jia, Y.; Li, W. Improved Spatiotemporal Information Fusion Approach Based on Bayesian Decision Theory for Land Cover Classification. Remote Sens. 2022, 14, 6003. https://doi.org/10.3390/rs14236003
Jin Y, Guan X, Ge Y, Jia Y, Li W. Improved Spatiotemporal Information Fusion Approach Based on Bayesian Decision Theory for Land Cover Classification. Remote Sensing. 2022; 14(23):6003. https://doi.org/10.3390/rs14236003
Chicago/Turabian StyleJin, Yan, Xudong Guan, Yong Ge, Yan Jia, and Wenmei Li. 2022. "Improved Spatiotemporal Information Fusion Approach Based on Bayesian Decision Theory for Land Cover Classification" Remote Sensing 14, no. 23: 6003. https://doi.org/10.3390/rs14236003
APA StyleJin, Y., Guan, X., Ge, Y., Jia, Y., & Li, W. (2022). Improved Spatiotemporal Information Fusion Approach Based on Bayesian Decision Theory for Land Cover Classification. Remote Sensing, 14(23), 6003. https://doi.org/10.3390/rs14236003