Frequency-Domain Q-Compensated Reverse Time Migration Using a Stabilization Scheme
Abstract
:1. Introduction
2. Materials and Methods
2.1. Acoustic and Viscoacoustic Wave Equation Forward Modeling in the Frequency Domain
2.2. Frequency-Domain Acoustic RTM
2.3. Stablized Frequency-Domain Viscoacoustic RTM
- Calculating the frequency-domain dispersion-only source wavefield and viscoacoustic source wavefield with a given source wavelet and then exploiting them to construct a stabilized amplitude compensation operator using Equation (11). Afterward, designing a stabilized viscoacoustic-compensated source wavefield using Equation (12);
- Applying the imaging condition (Equation (14)) to retrieve the image of the subsurface structure.
3. Results
3.1. The Layered Model Experiments
3.2. The BP Gas Model Experiments
3.3. The Field Data Applications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. The Derivation of Equation (5)
Appendix B. The Pseudo-Code of FA-RTM Algorithm
Algorithm A1 Acoustic RTM in the frequency domain |
Input: CSGs , source wavelet , velocity model . Output: The image . 1: Preprocessing: ; 2: ; 3: ; 4: ; 5: for: 6: ; 7: ; 8: for: 9: ; 10: ; 11: ; 12: ; 13: end 14: end 15: ; 16: . |
Appendix C. The Pseudo-Code of the Stabilized FQ-RTM Algorithm
Algorithm A2 Stabilized Q-compensated RTM in the frequency domain |
Input: CSGs , source wavelet , velocity model , Q model . Output: The image . 1: Preprocessing: ; 2:
; 3:
; 4:
; 5: for: 6: ; 7: ; 8: ; 9: ; 10: ; 11: ; 12: for: 13: ; 14: ; 15: ; 16: ; 17: ; 18: ; 19: ; 20: ; 21: ; 22: ; 23: end 24: end 25: ; 26: . |
References
- Kolsky, H. LXXI. The propagation of stress pulses in viscoelastic solids. Philos. Mag. 1956, 1, 693–710. [Google Scholar] [CrossRef]
- Futterman, W.I. Dispersive body waves. J. Geophys. Res. 1962, 67, 5279–5291. [Google Scholar] [CrossRef]
- Kjartansson, E. Constant Q-wave propagation and attenuation. J. Geophys. Res. 1979, 84, 4737–4748. [Google Scholar] [CrossRef] [Green Version]
- Mangriotis, M.D.; Rector, J.W.I.; Herkenhoff, E.F.; Neu, J.C. Scattering versus intrinsic attenuation in the vadose zone: A VSP experiment. Geophysics 2013, 78, B49–B63. [Google Scholar] [CrossRef]
- Wang, B. Inversion based data-adaptive attenuation compensation method. J. Seism. Explor. 2014, 23, 341–356. [Google Scholar]
- Li, G.; Sacchi, M.D.; Zheng, H. In situ evidence for frequency dependence of near-surface Q. Geophys. J. Int. 2016, 204, 1308–1315. [Google Scholar] [CrossRef]
- Bickel, S.H.; Natarajan, R.R. Plane-wave Q deconvolution. Geophysics 1985, 50, 1426–1439. [Google Scholar] [CrossRef]
- Wang, Y. A stable and efficient approach of inverse Q filtering. Geophysics 2002, 67, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Inverse Q-filter for seismic resolution enhancement. Geophysics 2006, 71, V51–V60. [Google Scholar] [CrossRef] [Green Version]
- Margrave, G.F.; Lamoureux, M.P.; Henley, D.C. Gabor deconvolution: Estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics 2011, 76, W15–W30. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X. Absorption-compensation method by L1-norm regularization. Geophysics 2014, 79, V107–V114. [Google Scholar] [CrossRef]
- Li, G.; Yang, L.; Hao, Z.; Wei, H. Absorption decomposition and compensation via a two-step scheme. Geophysics 2015, 80, V145–V155. [Google Scholar] [CrossRef]
- Wang, B.; Chen, X.; Li, J.; Chen, Z.; Liu, G. A Stable and Efficient Attenuation Compensation Method based on Inversion. Chin. J. Geophys. 2015, 58, 375–386. [Google Scholar] [CrossRef]
- Wang, B. An Amplitude Preserving S-Transform for Seismic Data Attenuation Compensation. IEEE Signal Process. Lett. 2016, 23, 1155–1159. [Google Scholar] [CrossRef]
- Wang, B.; Lu, W. An Efficient Amplitude-Preserving Generalized S Transform and Its Application in Seismic Data Attenuation Compensation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 859–866. [Google Scholar] [CrossRef]
- Wang, Y.; Ma, X.; Zhou, H.; Chen, Y. L1-2 minimization for exact and stable seismic attenuation compensation. Geophys. J. Int. 2018, 213, 1629–1646. [Google Scholar] [CrossRef]
- Ma, X.; Li, G.; Li, H.; Yang, W. Multichannel absorption compensation with a data-driven structural regularization. Geophysics 2020, 85, V71–V80. [Google Scholar] [CrossRef]
- Ma, X.; Li, G.; He, S.; Li, H.; Wang, Z. Spatially constrained attenuation compensation in the mixed domain. Geophys. Prospect. 2020, 68, 1819–1833. [Google Scholar] [CrossRef]
- Ma, X.; Li, G.; Li, H.; Li, J.; Fan, X. Stable absorption compensation with lateral constraint. Acta Geophys. 2020, 68, 1039–1048. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Wang, P.; Si, W.; Wang, Z. Visco-acoustic full waveform inversion using decoupled fractional Laplacian constant-Q wave equation and optimal transport-based misfit function. Explor. Geophys. 2022, 53, 140–150. [Google Scholar] [CrossRef]
- Ma, X.; Huo, L.; Li, G.; Li, H.; Meng, Q. Inversion-based attenuation compensation with dip constraint. Pet. Sci. 2022, 19, 543–553. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, P.; Zhang, H. Compensating for visco-acoustic effects in reverse-time migration. In SEG Technical Program Expanded Abstracts 2010, Proceedings of the 80th Annual Interational Meeting, Denver, CO, USA, 17–22 October 2010; Society of Exploration Geophysicists: Houston, TX, USA, 2010; pp. 3160–3164. [Google Scholar] [CrossRef]
- Dai, N.; West, G.F. Inverse Q migration. In SEG Technical Program Expanded Abstracts 1994, Proceedings of the 64th Annual Interational Meeting, Los Angeles, CA, USA, 11 June–6 July 1994; Society of Exploration Geophysicists: Houston, TX, USA, 1994; pp. 1418–1421. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, J. Seismic migration with inverse Q filtering. Geophys. Res. Lett. 2004, 31, 608–611. [Google Scholar] [CrossRef]
- Mittet, R. A simple design procedure for depth extrapolation operators that compensate for absorption and dispersion. Geophysics 2007, 72, S105–S112. [Google Scholar] [CrossRef]
- Bai, M.; Chen, X.; Wu, J.; Liu, G.; Chen, Y.; Chen, H.; Li, Q. Q-compensated migration by Gaussian beam summation method. J. Geophys. Eng. 2016, 13, 35–48. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, J.; Li, X. Compensation for absorption and dispersion in prestack migration:An effective Q approach. Geophysics 2013, 78, S1–S14. [Google Scholar] [CrossRef]
- Causse, E.; Ursin, B. Viscoacoustic reverse-time migration. J. Seism. Explor. 2000, 9, 165–184. [Google Scholar]
- Deng, F.; McMechan, G.A. True-amplitude prestack depth migration. Geophysics 2007, 72, S155–S166. [Google Scholar] [CrossRef]
- Sun, J.; Fomel, S.; Zhu, T.; Hu, J. Q-compensated least-squares reverse time migration using low-rank one-step wave extrapolation. Geophysics 2016, 81, S271–S279. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H. Viscoacoustic reverse time migration using a time-domain complex-valued wave equation. Geophysics 2018, 83, S505–S519. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Zhao, X.; Zhang, Q.; Chen, Y. Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme. Geophysics 2019, 84, S301–S315. [Google Scholar] [CrossRef]
- Zhu, T.; Harris, J.M.; Biondi, B. Q-compensated reverse-time migration. Geophysics 2014, 79, S77–S87. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; McMechan, G.A.; Guan, H. Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics 2016, 81, S281–S297. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Chen, H.; Chen, Y. Adaptive stabilization for Q-compensated reverse time migration. Geophysics 2018, 83, S15–S32. [Google Scholar] [CrossRef]
- Suh, S.; Yoon, K.; Cai, J.; Wang, B. Compensating visco-acoustic effects in anisotropic reverse-time migration. In SEG Technical Program Expanded Abstracts 2012, Proceedings of the 82nd Annual International Meeting, Las Vegas, NV, USA, 4–9 November 2012; Society of Exploration Geophysicists: Houston, TX, USA, 2012; pp. 557–567. [Google Scholar] [CrossRef]
- Fletcher, R.P.; Nichols, D.; Cavalca, M. Wavepath-consistent Effective Q Estimation for Q-compensated Reverse-time Migration. In Proceedings of the 74th EAGE Conference and Exhibition Incorporating EUROPEC 2012, Copenhagen, Denmark, 4–7 June 2012; p. A20. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Zhu, T. Strategies for stable attenuation compensation in reverse-time migration. Geophys. Prospect. 2018, 66, 498–511. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Wang, Y.; Chen, H.; Zhou, Z.; Sun, P.; Zhang, J. A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 2018, 83, S459–S476. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Rao, Y. An implicit stabilization strategy for Q-compensated reverse time migration. Geophysics 2020, 85, S169–S183. [Google Scholar] [CrossRef]
- Dutta, G.; Schuster, G.T. Attenuation compensation for least-squares reverse time migration using the viscoacoustic-wave equation. Geophysics 2014, 79, S251–S262. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.; McMechan, G.A. Compensating Q effects in viscoelastic media by adjoint-based least-squares reverse time migration. Geophysics 2018, 83, S151–S172. [Google Scholar] [CrossRef]
- Gao, B.; Li, G. Frequency-space domain viscoacoustic RTM using stable compensation operator. In SEG Technical Program Expanded Abstracts 2019, Proceedings of the 89th Annual Meeting 2019, San Antonio, TX, USA, 15–20 September 2019; Society of Exploration Geophysicists: Houston, TX, USA, 2019; pp. 4370–4374. [Google Scholar] [CrossRef]
- Liao, Q.; Mcmechan, G.A. Multifrequency viscoacoustic modeling and inversion. Geophysics 1996, 61, 1371–1378. [Google Scholar] [CrossRef]
- Stekl, I.; Pratt, R.G. Accurate viscoelastic modeling by frequency-domain finite differences using rotated operators. Geophysics 1998, 63, 1779–1794. [Google Scholar] [CrossRef]
- Marfurt, K. Accuracy of finite-difference and finite-element modelling of the scalar and elastic wave equation. Geophysics 1984, 49, 533–549. [Google Scholar] [CrossRef]
- Takekawa, J.; Mikada, H. A mesh-free finite-difference method for elastic wave propagation in the frequency-domain. Comput. Geosci. 2018, 118, 65–78. [Google Scholar] [CrossRef]
- Kim, Y.; Min, D.J.; Shin, C. Frequency-domain reverse-time migration with source estimation. Geophysics 2011, 76, S41–S49. [Google Scholar] [CrossRef]
- Luo, J.; Wang, B.; Wu, R.S.; Gao, J. Elastic Full Waveform Inversion With Angle Decomposition and Wavefield Decoupling. IEEE Trans. Geosci. Remote Sens. 2021, 59, 871–883. [Google Scholar] [CrossRef]
- Shin, C.; Sohn, H. A frequency-space 2-D scalar wave extrapolator using extended 25-point finite-difference operator. Geophysics 1998, 63, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Min, D.J.; Shin, C.; Kwon, B.D.; Chung, S. Improved frequency-domain elastic wave modeling using weighted-averaging difference operators. Geophysics 2000, 65, 884–895. [Google Scholar] [CrossRef]
- Jo, C.H.; Shin, C.; Suh, J.H. An optimal 9-point, finite-differnce, frequency-space, 2-D scalar wave extrapolator. Geophysics 1996, 61, 529–537. [Google Scholar] [CrossRef]
- Hustedt, B.; Operto, S.; Virieux, J. Mixed-grid and staggered-grid finite-difference methods for frequency-domain acoustic wave modeling. Geophys. J. Int. 2004, 157, 1269–1296. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.G. Frequency-domain elastic wave modeling by finite differences: A tool for crosshole seismic imaging. Geophysics 1990, 55, 626–632. [Google Scholar] [CrossRef]
- Schleicher, J.; Costa, J.; Novais, A. A comparison of imaging conditions for wave-equation shot-profile migration. Geophysics 2008, 73, S219–S227. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; McMechan, G.A. Imaging conditions for prestack reverse-time migration. Geophysics 2008, 73, S81–S89. [Google Scholar] [CrossRef]
- Li, Q. High Resolution Seismic Data Processing; Petroleum Industry Press: Beijing, China, 1993. [Google Scholar]
- Gasperini, L.; Stanghellini, G. SeisPrho: An interactive computer program for processing and interpretation of high-resolution seismic reflection profiles. Comput. Geosci. 2009, 35, 1497–1507. [Google Scholar] [CrossRef]
- Gasperini, L.; Ligi, M.; Stanghellini, G. Pseudo-3D techniques for analysis and interpretation of high-resolution marine seismic reflection data. Bull. Geophys. Oceanogr. 2021, 62, 599–614. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Rao, Y.; Sun, P.; Zhang, J.; Chen, Y. A matrix-transform numerical solver for fractional Laplacian viscoacoustic wave equation. Geophysics 2019, 84, T283–T297. [Google Scholar] [CrossRef]
- Sun, W.; Fu, L.Y. Two effective approaches to reduce data storage in reverse time migration. Comput. Geosci. 2013, 56, 69–75. [Google Scholar] [CrossRef]
- Tan, S.; Huang, L. Reducing the computer memory requirement for 3D reverse-time migration with a boundary-wavefield extrapolation method. Geophysics 2014, 79, S185–S194. [Google Scholar] [CrossRef]
- Symes, W.W. Reverse time migration with optimal checkpointing. Geophysics 2007, 72, SM213–SM221. [Google Scholar] [CrossRef]
- Mulder, W.A.; Plessix, R.E. How to choose a subset of frequencies in frequency-domain finite-difference migration. Geophys. J. Int. 2004, 158, 801–812. [Google Scholar] [CrossRef] [Green Version]
- Pratt, R.G. Seismic waveform inversion in the frequency domain. Part 1: Theory and verification in a physical scale model. Geophysics 1999, 64, 888–901. [Google Scholar] [CrossRef]
- Shin, C.; Min, D.J.; Yang, D.; Lee, S.K. Evaluation of poststack migration in terms of virtual source and partial derivative wavefields. J. Seism. Explor. 2003, 12, 17–37. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Li, H.; Gui, Z.; Peng, X.; Li, G. Frequency-Domain Q-Compensated Reverse Time Migration Using a Stabilization Scheme. Remote Sens. 2022, 14, 5850. https://doi.org/10.3390/rs14225850
Ma X, Li H, Gui Z, Peng X, Li G. Frequency-Domain Q-Compensated Reverse Time Migration Using a Stabilization Scheme. Remote Sensing. 2022; 14(22):5850. https://doi.org/10.3390/rs14225850
Chicago/Turabian StyleMa, Xiong, Hao Li, Zhixian Gui, Xiaobo Peng, and Guofa Li. 2022. "Frequency-Domain Q-Compensated Reverse Time Migration Using a Stabilization Scheme" Remote Sensing 14, no. 22: 5850. https://doi.org/10.3390/rs14225850
APA StyleMa, X., Li, H., Gui, Z., Peng, X., & Li, G. (2022). Frequency-Domain Q-Compensated Reverse Time Migration Using a Stabilization Scheme. Remote Sensing, 14(22), 5850. https://doi.org/10.3390/rs14225850