Li, B.; Lu, H.; Wang, H.; Qi, J.; Yang, G.; Pang, Y.; Dong, H.; Lian, Y.
Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments. Remote Sens. 2022, 14, 5798.
https://doi.org/10.3390/rs14225798
AMA Style
Li B, Lu H, Wang H, Qi J, Yang G, Pang Y, Dong H, Lian Y.
Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments. Remote Sensing. 2022; 14(22):5798.
https://doi.org/10.3390/rs14225798
Chicago/Turabian Style
Li, Bowen, Hao Lu, Han Wang, Jianbo Qi, Gang Yang, Yong Pang, Haolin Dong, and Yining Lian.
2022. "Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments" Remote Sensing 14, no. 22: 5798.
https://doi.org/10.3390/rs14225798
APA Style
Li, B., Lu, H., Wang, H., Qi, J., Yang, G., Pang, Y., Dong, H., & Lian, Y.
(2022). Terrain-Net: A Highly-Efficient, Parameter-Free, and Easy-to-Use Deep Neural Network for Ground Filtering of UAV LiDAR Data in Forested Environments. Remote Sensing, 14(22), 5798.
https://doi.org/10.3390/rs14225798