Compact Mesoscale Eddies in the South Brazil Bight
Abstract
:1. Introduction
2. Material and Methods
2.1. Datasets
2.1.1. Gridded Sea-Level Product and Mean Dynamic Topography
2.1.2. Eddy Atlas
- Effective contour: outermost high-pass filtered ADT closed contour detected from a search starting at the localized sea-level extremum; provided as 20-point coordinates (longitude, latitude).
- Speed contour: high-pass filtered ADT closed contour associated with maximum azimuthally averaged velocity detected from a search starting the localized sea-level extremum.
- Effective radius: eddy radius obtained by fitting a circle to the effective contour.
- Speed radius: eddy radius obtained by fitting a circle to the speed contour.
- Eddy center: coordinates (longitude, latitude) of the high-pass filtered ADT extremum obtained from fitting a circle to the speed contour.
- Average speed: azimuthally averaged speed associated with the speed radius.
2.2. The Brazil Current Front
2.2.1. Yearly Averaged Front
2.2.2. Monthly Averaged Front
2.3. Mean and Eddy Kinetic Energy
2.4. Kinetic Energy of Mesoscale Eddies
3. Results
3.1. Brazil Current Front
3.2. Fraction of EKE Accounted for by Compact Eddies
Breakdown of into Local and Remote Eddies
3.3. Eddy Properties
3.3.1. Origin and Propagation
3.3.2. Amplitude, Radius, Lifetime, and Speed
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chelton, D.B.; Ries, J.C.; Haines, B.J.; Fu, L.L.; Callahan, P.S. Satellite altimetry. In International Geophysics; Elsevier: Amsterdam, The Netherlands, 2001; Volume 69, pp. 1–131. [Google Scholar]
- Ferrari, R.; Wunsch, C. Ocean circulation kinetic energy: Reservoirs, sources, and sinks. Annu. Rev. Fluid Mech. 2009, 41, 253–282. [Google Scholar] [CrossRef] [Green Version]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M.; de Szoeke, R.A. Global observations of large oceanic eddies. Geophys. Res. Lett. 2007, 34, L15606. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Samelson, R.M. Global observations of nonlinear mesoscale eddies. Prog. Oceanogr. 2011, 91, 167–216. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G. Global observations of oceanic Rossby waves. Science 1996, 272, 234–238. [Google Scholar] [CrossRef]
- Polito, P.S.; Cornillon, P. Long baroclinic Rossby waves detected by TOPEX/POSEIDON. J. Geophys. Res. Ocean. 1997, 102, 3215–3235. [Google Scholar] [CrossRef]
- Oliveira, F.; Polito, P.S. Characterization of westward propagating signals in the South Atlantic from altimeter and radiometer records. Remote Sens. Environ. 2013, 134, 367–376. [Google Scholar] [CrossRef]
- Polito, P.S.; Sato, O.T. Do eddies ride on Rossby waves? J. Geophys. Res. Ocean. 2015, 120, 5417–5435. [Google Scholar] [CrossRef]
- Mode-Group. The mid-ocean dynamics experiment. Deep Sea Res. 1978, 25, 859–910. [Google Scholar] [CrossRef] [Green Version]
- Gill, A.; Green, J.; Simmons, A. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Res. Oceanogr. Abstr. 1974, 21, 499–528. [Google Scholar] [CrossRef]
- Abernathey, R.; Marshall, J. Global surface eddy diffusivities derived from satellite altimetry. J. Geophys. Res. Ocean. 2013, 118, 901–916. [Google Scholar] [CrossRef]
- Gaube, P.; McGillicuddy, D.J., Jr.; Chelton, D.B.; Behrenfeld, M.J.; Strutton, P.G. Regional variations in the influence of mesoscale eddies on near-surface chlorophyll. J. Geophys. Res. Ocean. 2014, 119, 8195–8220. [Google Scholar] [CrossRef] [Green Version]
- Groeskamp, S.; LaCasce, J.H.; McDougall, T.J.; Rogé, M. Full-Depth Global Estimates of Ocean Mesoscale Eddy Mixing from Observations and Theory. Geophys. Res. Lett. 2020, 47, e2020GL089425. [Google Scholar] [CrossRef]
- Chaigneau, A.; Gizolme, A.; Grados, C. Mesoscale eddies off Peru in altimeter records: Identification algorithms and eddy spatio-temporal patterns. Prog. Oceanogr. 2008, 79, 106–119. [Google Scholar] [CrossRef]
- Chaigneau, A.; Le Texier, M.; Eldin, G.; Grados, C.; Pizarro, O. Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats. J. Geophys. Res. Ocean. 2011, 116. [Google Scholar] [CrossRef]
- Castelao, R.M.; He, R. Mesoscale eddies in the South Atlantic bight. J. Geophys. Res. Ocean. 2013, 118, 5720–5731. [Google Scholar] [CrossRef]
- Pegliasco, C.; Chaigneau, A.; Morrow, R. Main eddy vertical structures observed in the four major Eastern Boundary Upwelling Systems. J. Geophys. Res. Ocean. 2015, 120, 6008–6033. [Google Scholar] [CrossRef]
- Aguedjou, H.; Dadou, I.; Chaigneau, A.; Morel, Y.; Alory, G. Eddies in the Tropical Atlantic Ocean and their seasonal variability. Geophys. Res. Lett. 2019, 46, 12156–12164. [Google Scholar] [CrossRef]
- De Ruijter, W.; Biastoch, A.; Drijfhout, S.; Lutjeharms, J.; Matano, R.; Pichevin, T.; Van Leeuwen, P.; Weijer, W. Indian-Atlantic interocean exchange: Dynamics, estimation and impact. J. Geophys. Res. Ocean. 1999, 104, 20885–20910. [Google Scholar] [CrossRef]
- Beal, L.M.; De Ruijter, W.P.; Biastoch, A.; Zahn, R. On the role of the Agulhas system in ocean circulation and climate. Nature 2011, 472, 429–436. [Google Scholar] [CrossRef]
- Gordon, A.L. Brazil-Malvinas Confluence–1984. Deep Sea Res. Part A Oceanogr. Res. Pap. 1989, 36, 359–384. [Google Scholar] [CrossRef]
- Goni, G.; Kamholz, S.; Garzoli, S.; Olson, D. Dynamics of the Brazil-Malvinas Confluence based on inverted echo sounders and altimetry. J. Geophys. Res. Ocean. 1996, 101, 16273–16289. [Google Scholar] [CrossRef]
- Silveira, I.; Lima, J.; Schmidt, A.; Ceccopieri, W.; Sartori, A.; Franscisco, C.; Fontes, R. Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability? Dyn. Atmos. Ocean. 2008, 45, 187–207. [Google Scholar] [CrossRef]
- Rocha, C.B.; Silveira, I.C.; Castro, B.M.; Lima, J.A.M. Vertical structure, energetics, and dynamics of the Brazil Current System at 22°S–28°S. J. Geophys. Res. Ocean. 2014, 119, 52–69. [Google Scholar] [CrossRef] [Green Version]
- Guerra, L.A.A.; Paiva, A.M.; Chassignet, E.P. On the translation of Agulhas rings to the western South Atlantic Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2018, 139, 104–113. [Google Scholar] [CrossRef]
- Laxenaire, R.; Speich, S.; Blanke, B.; Chaigneau, A.; Pegliasco, C.; Stegner, A. Anticyclonic eddies connecting the western boundaries of Indian and Atlantic oceans. J. Geophys. Res. Ocean. 2018, 123, 7651–7677. [Google Scholar] [CrossRef] [Green Version]
- Laxenaire, R.; Speich, S.; Stegner, A. Evolution of the Thermohaline Structure of One Agulhas Ring Reconstructed from Satellite Altimetry and Argo Floats. J. Geophys. Res. Ocean. 2019, 124, 8969–9003. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, D.C.; Silveira, I.C.; Rocha, C.B.; Flierl, G.R.; Calil, P.H.; Martins, R.P. On the Steadiness and Instability of the Intermediate Western Boundary Current between 24 and 18S. J. Phys. Oceanogr. 2019, 49, 3127–3143. [Google Scholar] [CrossRef]
- Ioannou, A.; Speich, S.; Laxenaire, R. Characterizing mesoscale eddies of eastern upwelling origins in the Atlantic Ocean and their role in offshore transport. Front. Mar. Sci. 2022, 9, 835260. [Google Scholar] [CrossRef]
- Pegliasco, C.; Delepoulle, A.; Mason, E.; Morrow, R.; Faugère, Y.; Dibarboure, G. META3.1exp: A new global mesoscale eddy trajectory atlas derived from altimetry. Earth Syst. Sci. Data 2022, 14, 1087–1107. [Google Scholar] [CrossRef]
- Abernathey, R.; Haller, G. Transport by lagrangian vortices in the Eastern Pacific. J. Phys. Oceanogr. 2018, 48, 667–685. [Google Scholar] [CrossRef]
- Mulet, S.; Rio, M.H.; Etienne, H.; Artana, C.; Cancet, M.; Dibarboure, G.; Feng, H.; Husson, R.; Picot, N.; Provost, C.; et al. The new CNES-CLS18 global mean dynamic topography. Ocean Sci. 2021, 17, 789–808. [Google Scholar] [CrossRef]
- Mason, E.; Pascual, A.; McWilliams, J.C. A new sea surface height–based code for oceanic mesoscale eddy tracking. J. Atmos. Ocean. Technol. 2014, 31, 1181–1188. [Google Scholar] [CrossRef] [Green Version]
- Drouin, K.L.; Lozier, M.S.; Johns, W.E. Variability and trends of the South Atlantic subtropical gyre. J. Geophys. Res. Ocean. 2021, 126, e2020JC016405. [Google Scholar] [CrossRef]
- Lorenzzetti, J.A.; Stech, J.L.; Mello Filho, W.L.; Assireu, A.T. Satellite observation of Brazil Current inshore thermal front in the SW South Atlantic: Space/time variability and sea surface temperatures. Cont. Shelf Res. 2009, 29, 2061–2068. [Google Scholar] [CrossRef]
- Garfield, N., III. The Brazil Current at Subtropical Latitudes. Ph.D. Thesis, University of Rhode Island, Narragansett, RI, USA, 1990. [Google Scholar]
- Martínez-Moreno, J.; McC. Hogg, A.; England, M.H. Climatology, seasonality, and trends of spatially coherent ocean eddies. J. Geophys. Res. Ocean. 2022, 127, e2021JC017453. [Google Scholar] [CrossRef]
- Oliveira, L.R.; Piola, A.R.; Mata, M.M.; Soares, I.D. Brazil Current surface circulation and energetics observed from drifting buoys. J. Geophys. Res. Ocean. 2009, 114, C10006. [Google Scholar] [CrossRef]
- Campos, E.J.; Gonçalves, J.; Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil Bight: Summer of 1991. J. Geophys. Res. Ocean. 1995, 100, 18537–18550. [Google Scholar] [CrossRef]
- Majumder, S.; Goes, M.; Polito, P.S.; Lumpkin, R.; Schmid, C.; Lopez, H. Propagating modes of variability and their impact on the western boundary current in the South Atlantic. J. Geophys. Res. Ocean. 2019, 124, 3168–3185. [Google Scholar] [CrossRef]
- Wang, Y.; Olascoaga, M.J.; Beron-Vera, F.J. Coherent water transport across the South Atlantic. Geophys. Res. Lett. 2015, 42, 4072–4079. [Google Scholar] [CrossRef] [Green Version]
- Andrade-Canto, F.; Beron-Vera, F. Do eddies connect the tropical Atlantic Ocean and the Gulf of Mexico? arXiv 2022, arXiv:2205.04835. [Google Scholar] [CrossRef]
Local | Remote, in | Remote, out | ||||
---|---|---|---|---|---|---|
cyc (732) | acy (794) | cyc (340) | acy (235) | cyc (930) | acy (868) | |
Amplitude [cm] | ||||||
Life time [day] | ||||||
Effec. radius [km] | ||||||
Speed rad. [km] | ||||||
Avg. speed [cm/s] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocha, C.B.; Simoes-Sousa, I.T. Compact Mesoscale Eddies in the South Brazil Bight. Remote Sens. 2022, 14, 5781. https://doi.org/10.3390/rs14225781
Rocha CB, Simoes-Sousa IT. Compact Mesoscale Eddies in the South Brazil Bight. Remote Sensing. 2022; 14(22):5781. https://doi.org/10.3390/rs14225781
Chicago/Turabian StyleRocha, Cesar B., and Iury T. Simoes-Sousa. 2022. "Compact Mesoscale Eddies in the South Brazil Bight" Remote Sensing 14, no. 22: 5781. https://doi.org/10.3390/rs14225781
APA StyleRocha, C. B., & Simoes-Sousa, I. T. (2022). Compact Mesoscale Eddies in the South Brazil Bight. Remote Sensing, 14(22), 5781. https://doi.org/10.3390/rs14225781