A Network for Landslide Detection Using Large-Area Remote Sensing Images with Multiple Spatial Resolutions
Abstract
:1. Introduction
2. Method and Materials
2.1. Proposed Architecture
2.2. Dataset Preparation
2.2.1. Jiuzhaigou Earthquake-Triggered Landslide Dataset
2.2.2. Lushan Earthquake-Triggered Landslide Dataset
2.2.3. Iburi Earthquake-Triggered Landslide Dataset
2.2.4. Bijie Landslide Dataset
3. Experimental Settings
3.1. Dataset and Comparison Methods
3.2. Implementation Details
3.3. Evaluation Metric
4. Results
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Cheng, D.; Choi, C.E.; Jin, W.; Lei, Y.; Kargel, J.S. The cost of rapid and haphazard urbanization: Lessons learned from the Freetown landslide disaster. Landslides 2019, 16, 1167–1176. [Google Scholar] [CrossRef] [Green Version]
- Youssef, A.M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Al-Katheeri, M.M. Landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia. Landslides 2016, 13, 839–856. [Google Scholar] [CrossRef]
- Mohan, A.; Singh, A.K.; Kumar, B.; Dwivedi, R. Review on remote sensing methods for landslide detection using machine and deep learning. Trans. Emerg. Telecommun. Technol. 2020, 32, e3998. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, F.; Guo, H.; Yi, L.; Zeng, J.; Li, B. Glacial Lake Area Changes in High Mountain Asia during 1990–2020 Using Satellite Remote Sensing. Research 2022, 2022, 9821275. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Chen, F.; Zhang, C.; Dong, J.; Du, E.; Wang, L. High emissions could increase the future risk of maize drought in China by 60–70%. Sci. Total Environ. 2022, 852, 158474. [Google Scholar] [CrossRef]
- Chen, F.; Yu, B.; Li, B. A practical trial of landslide detection from single-temporal Landsat8 images using contour-based proposals and random forest: A case study of national Nepal. Landslides 2018, 15, 453–464. [Google Scholar] [CrossRef]
- Lee, J.; Wang, J.; Crandall, D.; Sabanovic, S.; Fox, G. Real-Time, Cloud-Based Object Detection for Unmanned Aerial Vehicles. In Proceedings of the 2017 First IEEE International Conference on Robotic Computing (IRC), Taichung, Taiwan, 10–12 April 2017. [Google Scholar]
- Liu, W.; Yamazaki, F.; Vu, T.T. Automated Vehicle Extraction and Speed Determination from QuickBird Satellite Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 75–82. [Google Scholar] [CrossRef]
- Catani, F. Landslide detection by deep learning of non-nadiral and crowdsourced optical images. Landslides 2020, 18, 1025–1044. [Google Scholar] [CrossRef]
- Ji, S.; Yu, D.; Shen, C.; Li, W.; Xu, Q. Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks. Landslides 2020, 17, 1337–1352. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Tanaka, S.; Odajima, T.; Kamai, T.; Tsuchida, S. Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int. J. Remote Sens. 2003, 24, 3523–3534. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Xu, C. Landslide detection based on contour-based deep learning framework in case of national scale of Nepal in 2015. Comput. Geosci. 2020, 135, 104388. [Google Scholar] [CrossRef]
- Tavakkoli Piralilou, S.; Shahabi, H.; Jarihani, B.; Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Meena, S.R.; Aryal, J. Landslide detection using multi-scale image segmentation and different machine learning models in the higher imalayas. Remote Sens. 2019, 11, 2575. [Google Scholar] [CrossRef] [Green Version]
- Yu, B.; Chen, F.; Muhammad, S.; Li, B.; Wang, L.; Wu, M. A simple but effective landslide detection method based on image saliency. Photogramm. Eng. Remote Sens. 2017, 83, 351–363. [Google Scholar] [CrossRef]
- Aksoy, B.; Ercanoglu, M. Landslide identification and classification by object-based image analysis and fuzzy logic: An example from the Azdavay region (Kastamonu, Turkey). Comput. Geosci. 2012, 38, 87–98. [Google Scholar] [CrossRef]
- Pradhan, B.; Lee, S.; Buchroithner, M.F. Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Appl. Geomat. 2009, 1, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Lu, P.; Qin, Y.; Li, Z.; Mondini, A.C.; Casagli, N. Landslide mapping from multi-sensor data through improved change detection-based Markov random field. Remote Sens. Environ. 2019, 231, 111235. [Google Scholar] [CrossRef]
- Dou, J.; Paudel, U.; Oguchi, T.; Uchiyama, S.; Hayakavva, Y.S. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan. Terr. Atmos. Ocean. Sci. 2015, 26, 227. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Li, X.; Wang, Y.; Chen, G.; Liu, S. Forested landslide detection using LiDAR data and the random forest algorithm: A case study of the Three Gorges, China. Remote Sens. Environ. 2014, 152, 291–301. [Google Scholar] [CrossRef]
- Nhu, V.-H.; Mohammadi, A.; Shahabi, H.; Ahmad, B.B.; Al-Ansari, N.; Shirzadi, A.; Geertsema, M.; R Kress, V.; Karimzadeh, S.; Valizadeh Kamran, K. Landslide Detection and Susceptibility Modeling on Cameron Highlands (Malaysia): A Comparison between Random Forest, Logistic Regression and Logistic Model Tree Algorithms. Forests 2020, 11, 830. [Google Scholar] [CrossRef]
- Musaev, A.; Wang, D.; Shridhar, S.; Lai, C.-A.; Pu, C. Toward a real-time service for landslide detection: Augmented explicit semantic analysis and clustering composition approaches. In Proceedings of the 2015 IEEE International Conference on Web Services, New York, NY, USA, 27 June–2 July 2015; pp. 511–518. [Google Scholar]
- Chen, F.; Wang, N.; Yu, B.; Wang, L. Res2-Unet, a New Deep Architecture for Building Detection from High Spatial Resolution Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1494–1501. [Google Scholar] [CrossRef]
- Yu, B.; Yang, A.; Chen, F.; Wang, N.; Wang, L. SNNFD, spiking neural segmentation network in frequency domain using high spatial resolution images for building extraction. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102930. [Google Scholar] [CrossRef]
- Yu, B.; Xu, C.; Chen, F.; Wang, N.; Wang, L. HADeenNet: A hierarchical-attention multi-scale deconvolution network for landslide detection. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102853. [Google Scholar] [CrossRef]
- Yu, B.; Chen, F.; Wang, N.; Yang, L.; Wang, L. MSFTrans: A multi-task frequency-spatial learning Transformer for building extraction from high spatial resolution remote sensed images. GIScience Remote Sens. 2022, in press. [Google Scholar]
- Dey, E.K.; Awrangjeb, M.; Stantic, B. Outlier detection and robust plane fitting for building roof extraction from LiDAR data. Int. J. Remote Sens. 2020, 41, 6325–6354. [Google Scholar] [CrossRef]
- Hamaguchi, R.; Hikosaka, S. Building detection from satellite imagery using ensemble of size-specific detectors. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, UT, USA, 18–22 June 2018; pp. 187–191. [Google Scholar]
- Ji, S.; Wei, S.; Lu, M. Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set. IEEE Trans. Geosci. Remote Sens. 2018, 57, 574–586. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional networks for biomedical image segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Meena, S.R.; Ghorbanzadeh, O.; van Westen, C.J.; Nachappa, T.G.; Blaschke, T.; Singh, R.P.; Sarkar, R. Rapid mapping of landslides in the Western Ghats (India) triggered by 2018 extreme monsoon rainfall using a deep learning approach. Landslides 2021, 18, 1937–1950. [Google Scholar] [CrossRef]
- Prakash, N.; Manconi, A.; Loew, S. Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Cheng, M.-M.; Zhao, K.; Zhang, X.-Y.; Yang, M.-H.; Torr, P.H. Res2net: A new multi-scale backbone architecture. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 652–662. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Xu, C.; Ma, S.; Xu, X.; Wang, S.; Zhang, H. Inventory and Spatial Distribution of Landslides Triggered by the 8th August 2017 M w 6.5 Jiuzhaigou Earthquake, China. J. Earth Sci. 2019, 30, 206–217. [Google Scholar] [CrossRef]
- Liu, L.; Chong, X.U.; Chen, J. Landslide Factor Sensitivity Analyses for Landslides Triggered by 2013 Lushan Earthquake Using GIS Platform and Certainty Factor Method. J. Eng. Geol. 2014, 22, 1176–1186. [Google Scholar]
- Xu, C.; Xu, X.; Shyu, J. Database and spatial distribution of landslides triggered by the Lushan, China Mw 6.6 earthquake of 20 April 2013. Geomorphology 2015, 248, 77–92. [Google Scholar] [CrossRef]
- Shao, X.; Ma, S.; Xu, C.; Zhang, P.; Wen, B.; Tian, Y.; Zhou, Q.; Cui, Y. Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw6.6 Tomakomai, Japan Earthquake. Remote Sens. 2019, 11, 978. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.C.; Zhu, Y.; Papandreou, G.; Schroff, F.; Adam, H. Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Ma, S.; Xu, C. Assessment of co-seismic landslide hazard using the Newmark model and statistical analyses: A case study of the 2013 Lushan, China, Mw6.6 earthquake. Nat. Hazards 2019, 96, 389–412. [Google Scholar] [CrossRef]
- Marc, O.; Hovius, N. Amalgamation in landslide maps: Effects and automatic detection. Nat. Hazards Earth Syst. Sci. 2015, 15, 723–733. [Google Scholar] [CrossRef]
Authors | Image Data | Architecture | Spatial Resolution | Transferability Evaluation |
---|---|---|---|---|
Meena. et al. [30] | RGBI + DEM + NDVI | Eight-layer CNN | 3 m | Different parts of the same area |
Filippo Catani [9] | RGB | GoogleNet GoogleNet.Places365 ResNet 101 Inception v3 | Different parts of the same area | |
Ji et al. [10] | RGB + DEM | VGG-16 + 3D attention module | 0.8 m RGB 2 m DEM | Different parts of the same area |
Yu et al. [12] | Landsat5 + DEM | PSPNet | 30 m | The same area in different years |
Prakash et al. [31] | Sentinel2 + DEM | U-net | 2 m | Different parts of the same area |
Liu et al. [32] | RGB + DSM + Slope + Aspect | U-net + residual learning | 0.14 m | Different parts of the same area |
Event Name | No. of Landslides | Largest Landside Area (m2) | Smallest Landslide Area (m2) | Spatial Resolution (m) |
---|---|---|---|---|
Jiuzhaigou | 4834 | 236,336 | 16 | 2 |
Lushan | 11,366 | 122,615 | 100 | 5 |
Iburi | 9295 | 115,437 | 50 | 3 |
Bijie | 431 | 394,963 | 66.56 | 0.8 |
Model | Precision | Recall | F1-Measure | IOU | FPS |
---|---|---|---|---|---|
U-net | 71.29 | 14.30 | 19.61 | 13.03 | 199.32 |
U-net + residual module | 67.41 | 18.49 | 22.31 | 14.76 | 43.30 |
SegNet | 69.60 | 23.78 | 27.16 | 19.38 | 168.99 |
SegNet + residual module | 69.08 | 28.46 | 32.02 | 22.19 | 12.59 |
DeepLabv3 | 79.78 | 20.42 | 26.54 | 18.25 | 60.60 |
DeepLabv3 + residual module | 71.13 | 23.45 | 31.56 | 22.72 | 31.75 |
DeenNet | 62.09 | 37.64 | 38.67 | 27.40 | 84.58 |
Model | Precision | Recall | F1-Measure | IOU | FPS |
---|---|---|---|---|---|
U-net | 68.74 | 15.67 | 25.52 | 14.63 | 132.45 |
U-net + residual module | 69.96 | 71.20 | 70.57 | 54.52 | 36.25 |
SegNet | 73.14 | 57.28 | 64.24 | 47.32 | 96.41 |
SegNet + residual module | 80.51 | 64.82 | 71.82 | 56.03 | 10.53 |
DeepLabv3 | 73.82 | 10.69 | 18.45 | 10.30 | 39.08 |
DeepLabv3 + residual module | 69.98 | 40.12 | 50.54 | 34.23 | 27.11 |
DeenNet | 82.33 | 74.08 | 77.99 | 63.91 | 65.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, B.; Wang, N.; Xu, C.; Chen, F.; Wang, L. A Network for Landslide Detection Using Large-Area Remote Sensing Images with Multiple Spatial Resolutions. Remote Sens. 2022, 14, 5759. https://doi.org/10.3390/rs14225759
Yu B, Wang N, Xu C, Chen F, Wang L. A Network for Landslide Detection Using Large-Area Remote Sensing Images with Multiple Spatial Resolutions. Remote Sensing. 2022; 14(22):5759. https://doi.org/10.3390/rs14225759
Chicago/Turabian StyleYu, Bo, Ning Wang, Chong Xu, Fang Chen, and Lei Wang. 2022. "A Network for Landslide Detection Using Large-Area Remote Sensing Images with Multiple Spatial Resolutions" Remote Sensing 14, no. 22: 5759. https://doi.org/10.3390/rs14225759
APA StyleYu, B., Wang, N., Xu, C., Chen, F., & Wang, L. (2022). A Network for Landslide Detection Using Large-Area Remote Sensing Images with Multiple Spatial Resolutions. Remote Sensing, 14(22), 5759. https://doi.org/10.3390/rs14225759