Estimating Layered Cloud Cover from Geostationary Satellite Radiometric Measurements: A Novel Method and Its Application
Abstract
:1. Introduction
2. Data Sets and Method
2.1. Data Sets
2.2. Layered Cloud Cover Estimation Method
2.2.1. Retrieval of CTH and CBH
2.2.2. Classification of High, Medium, and Low Clouds
2.2.3. Calculation of LCC
3. Validation Using Active CPR-CALIOP Data
4. Comparison of LCC between AHI and ERA-5
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aebi, C.; Gröbner, J.; Kämpfer, N.; Vuilleumier, L. Cloud radiative effect, cloud fraction and cloud type at two stations in Switzerland using hemispherical sky cameras. Atmos. Meas. Tech. 2017, 10, 4587–4600. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.B. Cloud Microphysics and Climate. Science 1997, 276, 1072–1078. [Google Scholar] [CrossRef]
- Norris, J.R.; Allen, R.J.; Evan, A.T.; Zelinka, M.D.; O’Dell, C.W.; Klein, S.A. Evidence for climate change in the satellite cloud record. Nature 2016, 536, 72–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boers, R.; De Haij, M.J.; Wauben, W.M.F.; Baltink, H.K.; Van Ulft, L.H.; Savenije, M.; Long, C.N. Optimized fractional cloudiness determination from five ground-based remote sensing techniques. J. Geophys. Res. Earth Surf. 2010, 115, D24116. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Long, C.N.; Wang, H.; Comstock, J.M.; McFarlane, S.A.; Xie, S. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface measurements. Atmos. Chem. Phys. 2012, 12, 1785–1810. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, M.; Randall, D.A.; Webb, M.J.; Klein, S.A. Clearing clouds of uncertainty. Nat. Clim. Chang. 2017, 7, 674–678. [Google Scholar] [CrossRef]
- Li, J.; Yi, Y.; Minnis, P.; Huang, J.; Yan, H.; Ma, Y.; Wang, W.; Ayers, J.K. Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 361–375. [Google Scholar] [CrossRef]
- Collins, W.D. Parameterization of Generalized Cloud Overlap for Radiative Calculations in General Circulation Models. J. Atmos. Sci. 2001, 58, 3224–3242. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- McFarlane, S.A.; Mather, J.; Ackerman, T.P. Analysis of tropical radiative heating profiles: A comparison of models and observations. J. Geophys. Res. Earth Surf. 2007, 112, D14218. [Google Scholar] [CrossRef]
- Randall, D.; Coakley, J., Jr.; Fairall, C.; Kropfli, R.; Lenschow, D. Outlook for research on subtropical marine stratiform clouds, B. Am. Meteor. Soc. 1984, 65, 1290–1301. [Google Scholar] [CrossRef]
- Walsh, J.E.; Chapman, W.L.; Portis, D.H. Arctic Cloud Fraction and Radiative Fluxes in Atmospheric Reanalysis. J. Clim. 2009, 22, 2316–2334. [Google Scholar] [CrossRef]
- Potter, G.L. Testing the impact of clouds on the radiation budgets of 19 atmospheric general circulation models. J. Geophys. Res. Earth Surf. 2004, 109, D02106. [Google Scholar] [CrossRef] [Green Version]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. Ser. II 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- Chang, F.-L.; Li, Z. A Near-Global Climatology of Single-Layer and Overlapped Clouds and Their Optical Properties Retrieved from Terra/MODIS Data Using a New Algorithm. J. Clim. 2005, 18, 4752–4771. [Google Scholar] [CrossRef]
- Heidinger, A. ABI cloud height. In NOAA/NESDIS/STAR, GOES-R Algorithm Theoretical Basis Document (ATBD); NOAA NESDIS Center for Satellite Applications and Research: College Park, MD, USA, 2012; pp. 1–77. [Google Scholar]
- Menzel, W.P.; Frey, R.A.; Zhang, H.; Wylie, D.P.; Moeller, C.C.; Holz, R.E.; Maddux, B.; Baum, B.A.; Strabala, K.I.; Gumley, L.E. MODIS Global Cloud-Top Pressure and Amount Estimation: Algorithm Description and Results. J. Appl. Meteorol. Clim. 2008, 47, 1175–1198. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.D.; Forsythe, J.M.; Partain, P.T.; Haynes, J.M.; Bankert, R.L.; Sengupta, M.; Mitrescu, C.; Hawkins, J.D.; Haar, T.H.V. Estimating Three-Dimensional Cloud Structure via Statistically Blended Satellite Observations. J. Appl. Meteorol. Clim. 2014, 53, 437–455. [Google Scholar] [CrossRef] [Green Version]
- Seaman, C.J.; Noh, Y.-J.; Miller, S.D.; Heidinger, A.K.; Lindsey, D.T. Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat. J. Atmospheric Ocean. Technol. 2017, 34, 567–583. [Google Scholar] [CrossRef] [Green Version]
- Marchant, B.; Platnick, S.; Meyer, K.; Wind, G. Evaluation of the MODIS Collection 6 multilayer cloud detection algorithm through comparisons with CloudSat Cloud Profiling Radar and CALIPSO CALIOP products. Atmos. Meas. Tech. 2020, 13, 3263–3275. [Google Scholar] [CrossRef]
- Naud, C.; Baum, B.; Pavolonis, M.; Heidinger, A.; Frey, R.; Zhang, H. Comparison of MISR and MODIS cloud-top heights in the presence of cloud overlap. Remote Sens. Environ. 2007, 107, 200–210. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, C. Can MODIS cloud fraction fully represent the diurnal and seasonal variations at DOE ARM SGP and Manus sites? J. Geophys. Res. Atmos. 2017, 122, 329–343. [Google Scholar] [CrossRef]
- Yao, B.; Teng, S.; Lai, R.; Xu, X.; Yin, Y.; Shi, C.; Liu, C. Can atmospheric reanalyses (CRA and ERA5) represent cloud spatiotemporal characteristics? Atmos. Res. 2020, 244, 105091. [Google Scholar] [CrossRef]
- Tan, Z.; Huo, J.; Ma, S.; Han, D.; Wang, X.; Hu, S.; Yan, W. Estimating cloud base height from Himawari-8 based on a random forest algorithm. Int. J. Remote Sens. 2020, 42, 2485–2501. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, C.; Ma, S.; Wang, X.; Shang, J.; Wang, J.; Ai, W.; Yan, W. Detecting Multilayer Clouds From the Geostationary Advanced Himawari Imager Using Machine Learning Techniques. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4103112. [Google Scholar] [CrossRef]
- Tan, Z.; Ma, S.; Liu, C.; Teng, S.; Xu, N.; Hu, X.; Zhang, P.; Yan, W. Assessing Overlapping Cloud Top Heights: An Extrapolation Method and Its Performance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4107811. [Google Scholar] [CrossRef]
- Letu, H.; Yang, K.; Nakajima, T.Y.; Ishimoto, H.; Nagao, T.M.; Riedi, J.; Baran, A.J.; Ma, R.; Wang, T.; Shang, H.; et al. High-resolution retrieval of cloud microphysical properties and surface solar radiation using Himawari-8/AHI next-generation geostationary satellite. Remote Sens. Environ. 2019, 239, 111583. [Google Scholar] [CrossRef]
- Letu, H.; Nakajima, T.Y.; Wang, T.; Shang, H.; Ma, R.; Yang, K.; Baran, A.J.; Riedi, J.; Ishimoto, H.; Yoshida, M.; et al. A New Benchmark for Surface Radiation Products over the East Asia–Pacific Region Retrieved from the Himawari-8/AHI Next-Generation Geostationary Satellite. Bull. Am. Meteorol. Soc. 2022, 103, E873–E888. [Google Scholar] [CrossRef]
- Hersbach, H.; Dee, D. ERA5 reanalysis is in production. ECMWF Nesletter 2016, 147, 7. [Google Scholar]
- Iwabuchi, H.; Putri, N.S.; Saito, M.; Tokoro, Y.; Sekiguchi, M.; Yang, P.; Baum, B.A. Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Stephens, G.L.; Vane, D.G.; Boain, R.J.; Mace, G.G.; Sassen, K.; Wang, Z.; Illingworth, A.J.; O’Connor, E.J.; Rossow, W.B.; Durden, S.L.; et al. The CloudSat Mission and the A-Train: A new dimension of space-based measurements of clouds and precipitation. Bull. Am. Meteorol. Soc. 2002, 83, 1771–1790. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Vane, D.; Stephens, G.; Reinke, D. CloudSat Project: Level 2 Combined Radar and Lidar Cloud Scenario Classification Product Process Description and Interface Control Document; California Institute of Technology: Pasadena, CA, USA, 2013; 61p. [Google Scholar]
- Winker, D.M.; Vaughan, M.A.; Omar, A.; Hu, Y.; Powell, K.A.; Liu, Z.; Hunt, W.H.; Young, S. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms. J. Atmos. Ocean. Technol. 2009, 26, 2310–2323. [Google Scholar] [CrossRef]
- Teng, S.; Liu, C.; Zhang, Z.; Wang, Y.; Sohn, B.; Yung, Y.L. Retrieval of Ice-Over-Water Cloud Microphysical and Optical Properties Using Passive Radiometers. Geophys. Res. Lett. 2020, 47, e2020GL088941. [Google Scholar] [CrossRef]
Algorithm | Input Variables |
---|---|
Multi-layer cloud detection | R(0.64 μm), R(1.6 μm), R(2.3 μm), BT(3.9 μm), BT(7.3 μm), BT(8.6 μm), BT(11.2 μm), BT(12.4 μm), RD(2.3–1.6 μm), BTD(3.9–11.2 μm), BTD(8.6–11.2 μm), BTD(11.2–12.4 μm), latitude, longitude, solar zenith angle, solar azimuth angle |
CBH retrieval | cloud-top height, cloud-top temperature, cloud optical thickness, cloud effective radius, latitude, longitude |
Multi-layer cloud height extrapolation | Multi-layer cloud flag, single-layer-based CTH retrievals, single-layer-based CBH retrievals, cloud phase, cloud optical thickness |
ERA-5 | AHI | Difference | |
---|---|---|---|
Total cloud cover | 0.623 | 0.681 | −0.058 |
High cloud cover | 0.415 | 0.393 | 0.022 |
Medium cloud cover | 0.274 | 0.356 | −0.082 |
Low cloud cover | 0.392 | 0.455 | −0.063 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.; Ma, S.; Wang, X.; Liu, Y.; Ai, W.; Yan, W. Estimating Layered Cloud Cover from Geostationary Satellite Radiometric Measurements: A Novel Method and Its Application. Remote Sens. 2022, 14, 5693. https://doi.org/10.3390/rs14225693
Tan Z, Ma S, Wang X, Liu Y, Ai W, Yan W. Estimating Layered Cloud Cover from Geostationary Satellite Radiometric Measurements: A Novel Method and Its Application. Remote Sensing. 2022; 14(22):5693. https://doi.org/10.3390/rs14225693
Chicago/Turabian StyleTan, Zhonghui, Shuo Ma, Xin Wang, Yudi Liu, Weihua Ai, and Wei Yan. 2022. "Estimating Layered Cloud Cover from Geostationary Satellite Radiometric Measurements: A Novel Method and Its Application" Remote Sensing 14, no. 22: 5693. https://doi.org/10.3390/rs14225693
APA StyleTan, Z., Ma, S., Wang, X., Liu, Y., Ai, W., & Yan, W. (2022). Estimating Layered Cloud Cover from Geostationary Satellite Radiometric Measurements: A Novel Method and Its Application. Remote Sensing, 14(22), 5693. https://doi.org/10.3390/rs14225693