Special Issue “Ground Penetrating Radar (GPR) Applications in Civil Infrastructure Systems”
1. Characteristics of GPR
2. Merits of GPR
3. Content of This Special Issue
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Al-Ruzouq, R.; Abu Dabous, S.; Abueladas, A.; Hosny, F.; Ibrahim, F. Integrated Archaeological Modeling Based on Geomatics Techniques and Ground-Penetrating Radar. Remote Sens. 2022, 14, 1622. [Google Scholar] [CrossRef]
- Abdul Rahman, M.; Zayed, T.; Bagchi, A. Deterioration Mapping of RC Bridge Elements Based on Automated Analysis of GPR Images. Remote Sens. 2022, 14, 1131. [Google Scholar] [CrossRef]
- Zauner, G.; Groessbacher, D.; Buerger, M.; Auer, F.; Staccone, G. Gabor Filter-Based Segmentation of Railroad Radargrams for Improved Rail Track Condition Assessment: Preliminary Studies and Future Perspectives. Remote Sens. 2021, 13, 4293. [Google Scholar] [CrossRef]
- Puntu, J.M.; Chang, P.Y.; Lin, D.J.; Amania, H.H.; Doyoro, Y.G. A Comprehensive Evaluation for the Tunnel Conditions with Ground Penetrating Radar Measurements. Remote Sens. 2021, 13, 4250. [Google Scholar] [CrossRef]
- Tchana Tankeu, B.; Baltazart, V.; Wang, Y.; Guilbert, D. PUMA applied to time delay estimation for processing GPR data over debonded pavement structures. Remote Sens. 2021, 13, 3456. [Google Scholar] [CrossRef]
- Ching, G.P.; Chang, R.K.; Luo, T.X.; Lai, W.W. GPR Virtual Guidance System for Subsurface 3D Imaging. Remote Sens. 2021, 13, 2154. [Google Scholar] [CrossRef]
- Rhee, J.Y.; Park, K.T.; Cho, J.W.; Lee, S.Y. A Study of the Application and the Limitations of GPR Investigation on Underground Survey of the Korean Expressways. Remote Sens. 2021, 13, 1805. [Google Scholar] [CrossRef]
- Ortyl, Ł.; Gabryś, M. Subsoil recognition for road investment supported by the integration of geodetic and GPR data in the form of a point cloud. Remote Sens. 2021, 13, 3886. [Google Scholar] [CrossRef]
- Jin, Y.; Duan, Y. 2d wavelet decomposition and F-K migration for identifying fractured rock areas using ground penetrating radar. Remote Sens. 2021, 13, 2280. [Google Scholar] [CrossRef]
- Qin, H.; Wang, Z.; Tang, Y.; Geng, T. Analysis of Forward Model, Data Type, and Prior Information in Probabilistic Inversion of Crosshole GPR Data. Remote Sens. 2021, 13, 215. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zayed, T.; Dawood, T.; Abouhamad, M.; Alsharqawi, M. Special Issue “Ground Penetrating Radar (GPR) Applications in Civil Infrastructure Systems”. Remote Sens. 2022, 14, 5682. https://doi.org/10.3390/rs14225682
Zayed T, Dawood T, Abouhamad M, Alsharqawi M. Special Issue “Ground Penetrating Radar (GPR) Applications in Civil Infrastructure Systems”. Remote Sensing. 2022; 14(22):5682. https://doi.org/10.3390/rs14225682
Chicago/Turabian StyleZayed, Tarek, Thikra Dawood, Mona Abouhamad, and Mohammed Alsharqawi. 2022. "Special Issue “Ground Penetrating Radar (GPR) Applications in Civil Infrastructure Systems”" Remote Sensing 14, no. 22: 5682. https://doi.org/10.3390/rs14225682
APA StyleZayed, T., Dawood, T., Abouhamad, M., & Alsharqawi, M. (2022). Special Issue “Ground Penetrating Radar (GPR) Applications in Civil Infrastructure Systems”. Remote Sensing, 14(22), 5682. https://doi.org/10.3390/rs14225682