The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions
Abstract
1. Introduction
2. Methodology
3. Experiment and Discussion
3.1. Static Experiment
3.2. Kinematic Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zumberge, J.F.; Heflin, M.B.; Jefferson, D.C.; Watkins, M.M.; Webb, F.H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res. Solid Earth 1997, 102, 5005–5017. [Google Scholar] [CrossRef]
- Duan, B.B.; Hugentobler, U.; Chen, J.P.; Selmke, I.; Wang, J.X. Prediction versus real-time orbit determination for GNSS satellites. GPS Solut. 2019, 23, 10. [Google Scholar] [CrossRef]
- Geng, T.; Su, X.; Fang, R.X.; Xie, X.; Zhao, Q.L.; Liu, J.N. BDS Precise Point Positioning for Seismic Displacements Monitoring: Benefit from the High-Rate Satellite Clock Corrections. Sensors 2016, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Tegedor, J.; Lapucha, D.; Orpen, O.; Vigen, E.; Melgard, T.; Strandli, R.; Inst, N. The new G4 service: Multi-constellation Precise Point Positioning including GPS, GLONASS, Galileo and BeiDou. In Proceedings of the 28th International Technical Meeting of The Satellite-Division-of-the-Institute-of-Navigation (ION GNSS+), Tampa, FL, USA, 14–18 September 2015; pp. 1089–1095. [Google Scholar]
- Dai, L.W.; Chen, Y.Q.; Lie, A.; Zeitzew, M.; Zhang, Y.K.; Inst, N. StarFire (TM) SF3 Worldwide Centimeter-Accurate Real Time GNSS Positioning. In Proceedings of the 29th International Technical Meeting of The-Satellite-Division-of-the-Institute-of-Navigation, Portland, OR, USA, 12–16 September 2016; pp. 3295–3319. [Google Scholar]
- Leandro, R.; Landau, H.; Nitschke, M.; Glocker, M.; Seeger, S.; Chen, X.M.; Deking, A.; BenTahar, M.; Zhang, F.P.; Ferguson, K.; et al. RTX Positioning: The Next Generation of cm-accurate Real-Time GNSS Positioning. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation, Nashville, TN, USA, 19–23 September 2010; pp. 1460–1475. [Google Scholar]
- Li, M.; Xu, T.; Guan, M.; Gao, F.; Jiang, N. LEO-constellation-augmented multi-GNSS real-time PPP for rapid re-convergence in harsh environments. GPS Solut. 2022, 26, 29. [Google Scholar] [CrossRef]
- Wang, L.; Li, Z.S.; Ge, M.R.; Neitzel, F.; Wang, X.M.; Yuan, H. Investigation of the performance of real-time BDS-only precise point positioning using the IGS real-time service. GPS Solut. 2019, 23, 12. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, X.H.; Wang, J.L.; Ren, X.D. Modeling and assessment of triple-frequency BDS precise point positioning. J. Geod. 2016, 90, 1223–1235. [Google Scholar] [CrossRef]
- Zhao, Q.; Pan, S.G.; Gao, C.F.; Gao, W.; Xia, Y. BDS/GPS/LEO triple-frequency uncombined precise point positioning and its performance in harsh environments. Measurement 2020, 151, 11. [Google Scholar] [CrossRef]
- Lu, R.; Chen, W.; Zhang, C.L.; Li, L.; Peng, Y.; Zheng, Z.Q. Characteristics of the BDS-3 multipath effect and mitigation methods using precise point positioning. GPS Solut. 2022, 26, 17. [Google Scholar] [CrossRef]
- Srinivasu, V.K.D.; Dashora, N.; Prasad, D.; Niranjan, K. Loss of lock on GNSS signals and its association with ionospheric irregularities observed over Indian low latitudes. GPS Solut. 2022, 26, 12. [Google Scholar] [CrossRef]
- Yang, F.X.; Zhao, L.; Li, L.; Feng, S.J.; Cheng, J.H. Performance Evaluation of Kinematic BDS/GNSS Real-Time Precise Point Positioning for Maritime Positioning. J. Navig. 2019, 72, 34–52. [Google Scholar] [CrossRef]
- Cai, C.S.; Gao, Y. Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut. 2013, 17, 223–236. [Google Scholar] [CrossRef]
- Wang, K.; Khodabandeh, A.; Teunissen, P.J.G. Five-frequency Galileo long-baseline ambiguity resolution with multipath mitigation. GPS Solut. 2018, 22, 14. [Google Scholar] [CrossRef]
- Yang, Y.X.; Xu, Y.Y.; Li, J.L.; Yang, C. Progress and performance evaluation of BeiDou global navigation satellite system: Data analysis based on BDS-3 demonstration system. Sci. China-Earth Sci. 2018, 61, 614–624. [Google Scholar] [CrossRef]
- CSNO. BeiDou Navigation Satellite System Signal in Space Interface Control Document Open Service Signal B2b (Beta Version). 2019. Available online: http://www.beidou.gov.cn/xt/gfxz/202008/P020200803362059116442.pdf (accessed on 24 October 2019).
- Zhu, S.L.; Yue, D.J.; He, L.N.; Chen, J.; Liu, Z.Q. Modeling and performance assessment of BDS-2/BDS-3 triple-frequency ionosphere-free and uncombined precise point positioning. Measurement 2021, 180, 109564. [Google Scholar] [CrossRef]
- Kuang, K.F.; Wang, J.; Han, H.Z. Real-Time BDS-3 Clock Estimation with a Multi-Frequency Uncombined Model including New B1C/B2a Signals. Remote Sens. 2022, 14, 14. [Google Scholar] [CrossRef]
- Pan, L.; Li, X.P.; Yu, W.K.; Dai, W.J.; Kuang, C.L.; Chen, J.; Chen, F.D.; Xia, P.F. Performance Evaluation of Real-Time Precise Point Positioning with Both BDS-3 and BDS-2 Observations. Sensors 2020, 20, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, L.; Yang, F.X.; Li, L.; Liu, X.S.; Zhang, R.Z. Integrity monitoring for undifferenced and uncombined PPP under local environmental conditions. Meas. Sci. Technol. 2022, 33, 12. [Google Scholar] [CrossRef]
- Li, X.; Li, X.X.; Liu, G.G.; Yuan, Y.Q.; Freeshah, M.; Zhang, K.K.; Zhou, F. BDS multi-frequency PPP ambiguity resolution with new B2a/B2b/B2a+b signals and legacy B1I/B3I signals. J. Geod. 2020, 94, 15. [Google Scholar] [CrossRef]
- He, C.; Wang, Z.Q.; Yang, H.Z. Performance Evaluation for BDS-2+BDS-3 Combined Precision Point Positioning. In Proceedings of the 7th IEEE International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 19–20 October 2019; pp. 396–400. [Google Scholar]
- Bu, J.W.; Yu, K.G.; Qian, N.J.; Zuo, X.Q.; Chang, J. Performance Assessment of Positioning Based on Multi-Frequency Multi-GNSS Observations: Signal Quality, PPP and Baseline Solution. IEEE Access 2021, 9, 5845–5861. [Google Scholar] [CrossRef]
- Zhang, W.J.; Yang, H.Z.; He, C.; Wang, Z.Q.; Shao, W.P.; Zhang, Y.F.; Wang, J. Initial Performance Evaluation of Precise Point Positioning with Triple-Frequency Observations from BDS-2 and BDS-3 Satellites. J. Navig. 2020, 73, 763–775. [Google Scholar] [CrossRef]
- Cao, X.Y.; Shen, F.; Zhang, S.J.; Li, J.C. Satellite availability and positioning performance of uncombined precise point positioning using BeiDou-2 and BeiDou-3 multi-frequency signals. Adv. Space Res. 2021, 67, 1303–1316. [Google Scholar] [CrossRef]
- Wu, Z.Y.; Wang, Q.X.; Hu, C.; Yu, Z.H.; Wu, W. Modeling and assessment of five-frequency BDS precise point positioning. Satell. Navig. 2022, 3, 14. [Google Scholar] [CrossRef]
- Zhang, B.C. Study on the Theoretical Methodology and Applications of Precise Point Positioning Using Undifferenced and Uncombined GNSS Data. Acta Geod. Cartogr. Sin. 2014, 43, 1099. [Google Scholar]
- Li, Y.J.; Cai, C.S. A mixed single- and dual-frequency quad-constellation GNSS precise point positioning approach on Xiaomi Mi8 smartphones. J. Navig. 2019, 8, 15. [Google Scholar] [CrossRef]
- Fortunato, M.; Critchley-Marrows, J.; Siutkowska, M.; Ivanovici, M.L.; Benedetti, E.; Roberts, W. Enabling High Accuracy Dynamic Applications in Urban Environments Using PPP and RTK on Android Multi-Frequency and Multi-GNSS Smartphones. In Proceedings of the European Navigation Conference (ENC), Warsaw, Poland, 9–12 April 2019. [Google Scholar]
- Leick, A.; Rapoport, L.; Tatarnikov, D. GPS Satellite Surveying, 4th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kouba, J. A Guide to Using International GNSS Service (IGS) Products. 2009. Available online: https://igscb.jpl.nasa.gov/igscb/resource/pubs/UsingIGSProductsVer21.pdf (accessed on 9 March 2022).
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Boehm, J.; Niell, A.; Tregoning, P.; Schuh, H. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett. 2006, 33, 4. [Google Scholar] [CrossRef]
- Jin, S.G.; Wang, J.; Park, P.H. An improvement of GPS height estimations: Stochastic modeling. Earth Planets Space 2005, 57, 253–259. [Google Scholar] [CrossRef]
- Xiao, G.W.; Liu, G.Y.; Ou, J.K.; Liu, G.L.; Wang, S.L.; Guo, A.Z. MG-APP: An open-source software for multi-GNSS precise point positioning and application analysis. GPS Solut. 2020, 24, 13. [Google Scholar] [CrossRef]
System | Constellation | PRN | Signals |
---|---|---|---|
BDS-2 | GEO | C01-C05 | B1I, B2I, B3I |
IGSO | C06-C10/C13/C16 | B1I, B2I, B3I | |
MEO | C11/C12/C14 | B1I, B2I, B3I | |
BDS-3 | GEO | C59-C61 | B1I, B1C, B2a, B2b, B3I |
IGSO | C38-C40 | B1I, B1C, B2a, B2b, B3I | |
MEO | C19-C30/C32-C37/C41-C46 | B1I, BI1C, B2a, B2b, B3I |
Items | Strategies |
---|---|
Signal frequency | BDS-3: B1I/B1C/B2a/B3I; BDS-2/3: B1I/B1C/B2I/B2a/B3I; |
Elevation cutoff | 10°, 20°, 30°, 40°; |
Observation weighting | The a priori precision of pseudo-range and carrier phase is 0.6m and 0.006m, respectively. As a result of the comparatively lower accuracy of the orbit and clock data of BDS GEO satellites, their weight values are reduced by 100 times; |
Receiver coordinate | Estimated as white noise process; |
Receiver clock offset | Estimated as white noise process; |
Ionospheric delay | Estimated as white noise process; |
Tropospheric wet delay | Estimated as random walk process; |
Inter-frequency bias | Estimated as random walk process; |
Inter system bias | Estimated as constant; |
Phase ambiguities | Estimated as constant; float values; |
No | Station | Location | Receiver | Frequency of BDS-2/3 |
1 | JFNG | China | TRIMBLE ALLOY | B1I, B2I, B3I, B1C, B2a |
2 | NNOR | Australia | SEPT POLARX5TR | B1I, B2I, B3I, B1C, B2a |
3 | MIZU | Japan | SEPT ASTERX4 | B1I, B2I, B3I, B1C, B2a |
4 | SGOC | Sri Lanka | JAVAD TRE_3 | B1I, B2I, B3I, B1C, B2a |
5 | IISC | India | SEPT POLARX5 | B1I, B2I, B3I, B1C, B2a |
Elevation Angle | Direction | BDS-3 | BDS-2/3 | Improvement |
---|---|---|---|---|
10° | East | 0.044 m | 0.035 m | 20.45% |
North | 0.027 m | 0.019 m | 29.63% | |
Up | 0.052 m | 0.040 m | 23.08% | |
CT | 0.38 h | 0.33 h | 13.16% | |
20° | East | 0.047 m | 0.036 m | 23.40% |
North | 0.029 m | 0.019 m | 34.48% | |
Up | 0.056 m | 0.040 m | 28.57% | |
CT | 0.27 h | 0.17 h | 37.04% | |
30° | East | 0.051 m | 0.037 m | 27.45% |
North | 0.030 m | 0.020 m | 33.33% | |
Up | 0.115 m | 0.104 m | 9.57% | |
CT | 0.41 h | 0.36 h | 12.20% | |
40° | East | 0.082 m | 0.036 m | 56.10% |
North | 0.055 m | 0.026 m | 52.73% | |
Up | 0.261 m | 0.161 m | 38.31% | |
CT | 3.36 h | 1.52 h | 54.76% |
Elevation Angle | Direction | BDS-3 | BDS-2/3 | Improvement |
---|---|---|---|---|
10° | East | 0.039 m | 0.022 m | 43.59% |
North | 0.025 m | 0.019 m | 24.00% | |
Up | 0.048 m | 0.032 m | 33.33% | |
20° | East | 0.039 m | 0.026 m | 33.33% |
North | 0.029 m | 0.021 m | 27.59% | |
Up | 0.057 m | 0.039 m | 31.58% | |
30° | East | 0.043 m | 0.028 m | 34.88% |
North | 0.034 m | 0.025 m | 26.47% | |
Up | 0.136 m | 0.117 m | 13.97% | |
40° | East | 0.050 m | 0.035 m | 30.00% |
North | 0.049 m | 0.033 m | 32.65% | |
Up | 0.249 m | 0.218 m | 12.45% |
Traditional BDS3 | Mixed BDS3 | Traditional BDS-2/3 | Mixed BDS-2/3 | |
---|---|---|---|---|
North | 0.097 m | 0.049 m | 0.058 m | 0.038 m |
East | 0.287 m | 0.172 m | 0.132 m | 0.081 m |
Up | 0.245 m | 0.149 m | 0.128 m | 0.068 m |
Time | 0.43 h | 0.38 h | 0.20 h | 0.12 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, F.; Zheng, C.; Zhang, J.; Sun, Z.; Li, L.; Zhao, L. The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions. Remote Sens. 2022, 14, 5525. https://doi.org/10.3390/rs14215525
Yang F, Zheng C, Zhang J, Sun Z, Li L, Zhao L. The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions. Remote Sensing. 2022; 14(21):5525. https://doi.org/10.3390/rs14215525
Chicago/Turabian StyleYang, Fuxin, Chuanlei Zheng, Jie Zhang, Zhiguo Sun, Liang Li, and Lin Zhao. 2022. "The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions" Remote Sensing 14, no. 21: 5525. https://doi.org/10.3390/rs14215525
APA StyleYang, F., Zheng, C., Zhang, J., Sun, Z., Li, L., & Zhao, L. (2022). The Initial Performance Evaluation of Mixed Multi-Frequency Undifferenced and Uncombined BDS-2/3 Precise Point Positioning under Urban Environmental Conditions. Remote Sensing, 14(21), 5525. https://doi.org/10.3390/rs14215525