An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR
Abstract
:1. Introduction
2. Trajectory Error in BiSAR
3. Method of Trajectory Error Estimation and Compensation
3.1. Azimuth Signal Extraction
3.2. Doppler Error Estimation
3.3. Cascading Autofocus for Further Doppler Error Estimation
3.4. Scatter Position Estimation
3.5. 3D Trajectory Error Estimation
4. Simulation and Experiment Results
4.1. Simulation Results and Discussion
4.2. Results on Experimental Data
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Qiu, X.; Ding, C.; Hu, D. Bistatic SAR Data Processing Algorithms; Wiley: Singapore, 2013. [Google Scholar]
- Wang, R.; Deng, Y. Bistatic SAR System and Signal Processing Technology; Springer: Singapore, 2018. [Google Scholar]
- Yang, J. Bistatic Synthetic Aperture Radar; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Pu, W.; Wu, J.; Huang, Y.; Wang, X.; Yang, J.; Li, W.; Yang, H. Nonsystematic Range Cell Migration Analysis and Autofocus Correction for Bistatic Forward-looking SAR. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6556–6570. [Google Scholar] [CrossRef]
- Bao, M.; Zhou, S.; Yang, L.; Xing, M.; Zhao, L. Data-Driven Motion Compensation for Airborne Bistatic SAR Imagery Under Fast Factorized Back Projection Framework. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 1728–1740. [Google Scholar] [CrossRef]
- Xu, G.; Zhou, S.; Yang, L.; Deng, S.; Wang, Y.; Xing, M. Efficient Fast Time-Domain Processing Framework for Airborne Bistatic SAR Continuous Imaging Integrated With Data-Driven Motion Compensation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.; Sun, Z.; Wu, J.; Li, Z.; Yang, J. An Autofocus Scheme of Bistatic SAR Considering Cross-Cell Residual Range Migration. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Pu, W.; Wu, J.; Huang, Y.; Li, W.; Sun, Z.; Yang, J.; Yang, H. Motion Errors and Compensation for Bistatic Forward-Looking SAR With Cubic-Order Processing. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6940–6957. [Google Scholar] [CrossRef]
- Pu, W.; Wu, J.; Huang, Y.; Du, K.; Li, W.; Yang, J.; Yang, H. A Rise-Dimensional Modeling and Estimation Method for Flight Trajectory Error in Bistatic Forward-Looking SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 5001–5015. [Google Scholar] [CrossRef]
- Pu, W.; Wu, J.; Huang, Y.; Yang, J.; Yang, H. Fast Factorized Backprojection Imaging Algorithm Integrated With Motion Trajectory Estimation for Bistatic Forward-Looking SAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3949–3965. [Google Scholar] [CrossRef]
- Mao, X.; Shi, T.; Zhan, R.; Zhang, Y.D.; Zhu, D. Structure-Aided 2D Autofocus for Airborne Bistatic Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7500–7516. [Google Scholar] [CrossRef]
- Chim, M.C.; Perissin, D. Motion compensation of L-band SAR using GNSS-INS. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3433–3436. [Google Scholar]
- Song, J.; Xu, C. A SAR motion compensation algorithm based on INS and GPS. In Proceedings of the IET International Radar Conference (IET IRC 2020), Chongqing, China, 4–6 November 2020; pp. 576–581. [Google Scholar]
- Wang, B.; Xiang, M.; Chen, L. Motion compensation on baseline oscillations for distributed array SAR by combining interferograms and inertial measurement. IET Radar Sonar Navig. 2017, 11, 1285–1291. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Sun, Z.; An, H.; Wu, J.; Yang, J. BeiDou-Based Passive Multistatic Radar Maritime Moving Target Detection Technique via Space-Time Hybrid Integration Processing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Li, N.; Wang, R.; Deng, Y.; Yu, W.; Zhang, Z.; Liu, Y. Autofocus Correction of Residual RCM for VHR SAR Sensors With Light-Small Aircraft. IEEE Trans. Geosci. Remote Sens. 2017, 55, 441–452. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, F.; Zeng, T.; Wang, C. A Novel Motion Compensation Algorithm Based on Motion Sensitivity Analysis for Mini-UAV-Based BiSAR System. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Chen, J.; Xing, M.; Yu, H.; Liang, B.; Peng, J.; Sun, G.C. Motion Compensation/Autofocus in Airborne Synthetic Aperture Radar: A Review. IEEE Geosci. Remote Sens. Mag. 2021, 10, 185–206. [Google Scholar] [CrossRef]
- Zhang, T.; Liao, G.; Li, Y.; Gu, T.; Zhang, T.; Liu, Y. An Improved Time-Domain Autofocus Method Based on 3D Motion Errors Estimation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar]
- Samczynski, P.; Kulpa, K.S. Coherent MapDrift Technique. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1505–1517. [Google Scholar] [CrossRef]
- Evers, A.; Jackson, J.A. A Generalized Phase Gradient Autofocus Algorithm. IEEE Trans. Comput. Imaging 2019, 5, 606–619. [Google Scholar] [CrossRef]
- Miao, Y.; Wu, J.; Yang, J. Azimuth Migration-Corrected Phase Gradient Autofocus for Bistatic SAR Polar Format Imaging. IEEE Geosci. Remote Sens. Lett. 2021, 18, 697–701. [Google Scholar] [CrossRef]
- Fienup, J.R.; Miller, J.J. Aberration correction by maximizing generalized sharpness metrics. J. Opt. Soc. Am. A 2003, 20, 609–620. [Google Scholar] [CrossRef]
- Ash, J.N. An Autofocus Method for Backprojection Imagery in Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2012, 9, 104–108. [Google Scholar] [CrossRef]
- Hu, K.; Zhang, X.; He, S.; Zhao, H.; Shi, J. A Less-Memory and High-Efficiency Autofocus Back Projection Algorithm for SAR Imaging. IEEE Geosci. Remote Sens. Lett. 2015, 12, 890–894. [Google Scholar]
- Berizzi, F.; Corsini, G. Autofocusing of inverse synthetic aperture radar images using contrast optimization. IEEE Trans. Aerosp. Electron. Syst. 1996, 32, 1185–1191. [Google Scholar] [CrossRef]
- Jungang, Y.; Xiaotao, H.; Tian, J.; Guoyi, X.; Zhimin, Z. An Interpolated Phase Adjustment by Contrast Enhancement Algorithm for SAR. IEEE Geosci. Remote Sens. Lett. 2011, 8, 211–215. [Google Scholar] [CrossRef]
- Kragh, T. Monotonic Iterative Algorithm for Minimum-Entropy Autofocus. In Proceedings of the Adaptive Sensor Array Processing (ASAP) Workshop, Lexington, MA, USA, 6–7 June 2006. [Google Scholar]
- Xiong, T.; Xing, M.; Wang, Y.; Wang, S.; Sheng, J.; Guo, L. Minimum-Entropy-Based Autofocus Algorithm for SAR Data Using Chebyshev Approximation and Method of Series Reversion, and Its Implementation in a Data Processor. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1719–1728. [Google Scholar] [CrossRef]
- Yang, L.; Xing, M.; Wang, Y.; Zhang, L.; Bao, Z. Compensation for the NsRCM and Phase Error After Polar Format Resampling for Airborne Spotlight SAR Raw Data of High Resolution. IEEE Geosci. Remote Sens. Lett. 2013, 10, 165–169. [Google Scholar] [CrossRef]
- Mao, X.; Zhu, D.; Zhu, Z. Autofocus Correction of APE and Residual RCM in Spotlight SAR Polar Format Imagery. IEEE Trans. Aerosp. Electron. Syst. 2013, 49, 2693–2706. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Guo, D.; Li, Z.; Wu, J.; Huang, Y.; Yang, H.; Yang, J. Bistatic Forward-Looking SAR Motion Error Compensation Method Based on Keystone Transform and Modified Autofocus Back-Projection. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Yokohama, Japan, 28 July–2 August 2019; pp. 827–830. [Google Scholar]
- Ran, L.; Liu, Z.; Li, T.; Xie, R.; Zhang, L. Extension of Map-Drift Algorithm for Highly Squinted SAR Autofocus. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 4032–4044. [Google Scholar] [CrossRef]
- Chen, J.; Liang, B.; Zhang, J.; Yang, D.G.; Deng, Y.; Xing, M. Efficiency and Robustness Improvement of Airborne SAR Motion Compensation With High Resolution and Wide Swath. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Chen, J.; Liang, B.; Yang, D.G.; Zhao, D.J.; Xing, M.; Sun, G.C. Two-Step Accuracy Improvement of Motion Compensation for Airborne SAR With Ultrahigh Resolution and Wide Swath. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7148–7160. [Google Scholar] [CrossRef]
- Liang, Y.; Dang, Y.; Li, G.; Wu, J.; Xing, M. A Two-Step Processing Method for Diving-Mode Squint SAR Imaging With Subaperture Data. IEEE Trans. Geosci. Remote Sens. 2020, 58, 811–825. [Google Scholar] [CrossRef]
- Zhu, D.; Xiang, T.; Wei, W.; Ren, Z.; Yang, M.; Zhang, Y.; Zhu, Z. An Extended Two Step Approach to High-Resolution Airborne and Spaceborne SAR Full-Aperture Processing. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8382–8397. [Google Scholar] [CrossRef]
- Lin, H.; Chen, J.; Xing, M.; Chen, X.; You, D.; Sun, G. 2D Frequency Autofocus for Squint Spotlight SAR Imaging With Extended Omega-K. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar]
- Lin, H.; Chen, J.; Xing, M.; Chen, X.; Li, N.; Xie, Y.; Sun, G.C. Time-Domain Autofocus for Ultrahigh Resolution SAR Based on Azimuth Scaling Transformation. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–12. [Google Scholar] [CrossRef]
- Mao, X.; He, X.; Li, D. Knowledge-Aided 2D Autofocus for Spotlight SAR Range Migration Algorithm Imagery. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5458–5470. [Google Scholar] [CrossRef]
- Ran, L.; Liu, Z.; Zhang, L.; Li, T.; Xie, R. An Autofocus Algorithm for Estimating Residual Trajectory Deviations in Synthetic Aperture Radar. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3408–3425. [Google Scholar] [CrossRef]
- Chen, V.; Ling, H. Time–Frequency Transforms for Radar Imaging and Signal Analysis; Artech House: Norwood, MA, USA, 2002. [Google Scholar]
- Li, Z.; Zhang, X.; Yang, Q.; Xiao, Y.; An, H.; Yang, H.; Wu, J.; Yang, J. Hybrid SAR-ISAR Image Formation via Joint FrFT-WVD Processing for BFSAR Ship Target High-Resolution Imaging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Akujuobi, C. Wavelets and Wavelet Transform Systems and Their Applications; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Li, Z.; Li, S.; Liu, Z.; Yang, H.; Wu, J.; Yang, J. Bistatic Forward-Looking SAR MP-DPCA Method for Space-Time Extension Clutter Suppression. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6565–6579. [Google Scholar] [CrossRef]
- Li, Z.; Wang, S.; Jiang, J.; Yu, Y.; Yang, H.; Liu, W.; Zhang, P.; Liu, T. Orthogonal phase demodulation system with wide frequency band response based on birefringent crystals and polarization technology. In Proceedings of the SPIE 11901, Advanced Sensor Systems and Applications XI, 119010Q, Nantong, China, 9 October 2021. [Google Scholar]
- Lyche, T. Numerical Linear Algebra and Matrix Factorizations; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Li, Y.; Xu, G.; Zhou, S.; Xing, M.; Song, X. A Novel CFFBP Algorithm With Noninterpolation Image Merging for Bistatic Forward-Looking SAR Focusing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Sun, H.; Sun, Z.; Chen, T.; Miao, Y.; Wu, J.; Yang, J. An Efficient Backprojection Algorithm Based on Wavenumber-Domain Spectral Splicing for Monostatic and Bistatic SAR Configurations. Remote Sens. 2022, 14, 1885. [Google Scholar] [CrossRef]
- Miao, Y.; Wu, J.; Li, Z.; Yang, J. A Generalized Wavefront-Curvature-Corrected Polar Format Algorithm to Focus Bistatic SAR Under Complicated Flight Paths. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3757–3771. [Google Scholar] [CrossRef]
- Miao, Y.; Yang, J.; Wu, J.; Sun, Z.; Chen, T. Spatially Variable Phase Filtering Algorithm Based on Azimuth Wavenumber Regularization for Bistatic Spotlight SAR Imaging Under Complicated Motion. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Li, Z.; Ye, H.; Liu, Z.; Sun, Z.; An, H.; Wu, J.; Yang, J. Bistatic SAR Clutter-Ridge Matched STAP Method for Nonstationary Clutter Suppression. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–14. [Google Scholar] [CrossRef]
- Esri. “Imagery” [Basemap]. Scale Not Given. “World Imagery”. 2022. Available online: https://www.arcgis.com/home/item.html?id=10df2279f9684e4a9f6a7f08febac2a9 (accessed on 9 September 2022).
Signal Parameters | |||
Carrier frequency | Bandwidth | PRF | Integration time |
15 GHz | 400 MHz | 2000 Hz | 1 s |
Geometry Parameters | |||
Transmitter position | Receiver position | Transmitter velocity | Receiver velocity |
(−600, −900, 800) m | (−500, −800, 900) m | (−5, 30, 3) m/s | (0, 31, 2) m/s |
Without Motion Compensation | Conventional Autofocus [25] | Proposed Method | ||
---|---|---|---|---|
Overall image quality | Entropy | 10.43 | 8.64 | 6.17 |
Contrast | 37.4 | 99.9 | 300.1 | |
Sharpness | ||||
Range IRW | A | 0.93 m | 1.13 m | 0.57 m |
B | 0.53 m | 0.49 m | 0.44 m | |
C | 0.90 m | 0.63 m | 0.41 m | |
Azimuth IRW | A | 1.36 m | 1.15 m | 0.74 m |
B | 0.83 m | 0.61 m | 0.54 m | |
C | 1.53 m | 1.57 m | 0.45 m | |
Range PSLR | A | −0.44 dB | −1.13 dB | −13.3 dB |
B | −6.21 dB | −8.75 dB | −13.3 dB | |
C | −1.33 dB | −0.50 dB | −13.3 dB | |
Azimuth PSLR | A | −0.45 dB | −1.06 dB | −11.7 dB |
B | −1.06 dB | −7.01 dB | −11.8 dB | |
C | −1.33 dB | −0.78 dB | −12.0 dB | |
Range ISLR | A | 5.95 dB | 5.94 dB | −9.67 dB |
B | −4.63 dB | −9.22 dB | −9.90 dB | |
C | 5.41 dB | 3.72 dB | −9.51 dB | |
Azimuth ISLR | A | 5.68 dB | 5.33 dB | −9.33 dB |
B | 6.28 dB | −5.14 dB | −9.16 dB | |
C | 7.11 dB | 5.76 dB | −9.01 dB |
Signal Parameters | |||
Carrier frequency | Bandwidth | PRF | Integration time |
9.6 GHz | 400 MHz | 3200 Hz | 6 s |
Geometry Parameters | |||
Transmitter position | Receiver position | Transmitter velocity | Receiver velocity |
(1900, −1600, 1650) m | (0, −3100, 2150) m | (0, 73, 0) m/s | (0, 73, 0) m/s |
Without Motion Compensation | Conventional Autofocus [25] | Proposed Method | ||
---|---|---|---|---|
Overall image quality | Entropy | 14.93 | 14.37 | 14.09 |
Contrast | 7.78 | 13.07 | 69.80 | |
Sharpness | ||||
Range IRW | A | 0.58 m | 0.51 m | 0.50 m |
B | 0.61 m | 0.60 m | 0.60 m | |
C | 0.72 m | 0.76 m | 0.59 m | |
Azimuth IRW | A | 1.07 m | 0.32 m | 0.26 m |
B | 0.29 m | 0.25 m | 0.22 m | |
C | 0.30 m | 0.30 m | 0.30 m | |
Range PSLR | A | −4.64 dB | −9.83 dB | −12.6 dB |
B | −10.1 dB | −11.2 dB | −12.3 dB | |
C | −5.34 dB | −4.06 dB | −13.0 dB | |
Azimuth PSLR | A | −0.33 dB | −0.87 dB | −6.38 dB |
B | −2.70 dB | −1.29 dB | −12.6 dB | |
C | −0.84 dB | −5.34 dB | −10.5 dB | |
Range ISLR | A | −2.35 dB | −5.33 dB | −9.06 dB |
B | −6.70 dB | −7.81 dB | −9.51 dB | |
C | −0.86 dB | −1.09 dB | −5.38 dB | |
Azimuth ISLR | A | 6.44 dB | 6.01 dB | −1.04 dB |
B | −6.12 dB | −7.02 dB | −9.52 dB | |
C | 7.58 dB | 5.21 dB | −5.23 dB |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Li, W.; Wu, J.; Sun, Z.; Sun, H.; Yang, J. An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR. Remote Sens. 2022, 14, 5522. https://doi.org/10.3390/rs14215522
Li Y, Li W, Wu J, Sun Z, Sun H, Yang J. An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR. Remote Sensing. 2022; 14(21):5522. https://doi.org/10.3390/rs14215522
Chicago/Turabian StyleLi, Yi, Wenchao Li, Junjie Wu, Zhichao Sun, Huarui Sun, and Jianyu Yang. 2022. "An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR" Remote Sensing 14, no. 21: 5522. https://doi.org/10.3390/rs14215522
APA StyleLi, Y., Li, W., Wu, J., Sun, Z., Sun, H., & Yang, J. (2022). An Estimation and Compensation Method for Motion Trajectory Error in Bistatic SAR. Remote Sensing, 14(21), 5522. https://doi.org/10.3390/rs14215522