Spatial Spectrum Estimation of Co-Channel Direct Signal in Passive Radar Based on Coprime Array
Abstract
:1. Introduction
2. Materials and Methods
2.1. Signal Model
2.2. Direct Signal Spatial Spectrum Estimation Algorithm Based on the Fusion of Coprime Array and Compressed Sensing
3. Results and Analysis
3.1. Numerical Simulation Description
3.2. Simulation Results and Analysis
3.2.1. Performance Analysis of DOF
3.2.2. Performance Analysis of Direct-Signal High-Resolution DOA Estimation
3.2.3. Performance Analysis of Direct-Signal High-Resolution DOA Estimation in Complex Environment
3.2.4. Performance Analysis of the Accuracy of Enumerating All CCBSs
3.2.5. Performance Analysis of the Accuracy of Enumerating Some CCBSs
3.3. Field Experiment Results and Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuschel, H.; Cristallini, D.; Olsen, K.E. Tutorial: Passive radar tutorial. IEEE Aerosp. Electron. Syst. 2019, 34, 2–19. [Google Scholar] [CrossRef]
- Liu, Y.; Yi, J.; Wan, X.; Zhang, X.; Ke, H. Time-Varying Clutter Suppression in CP-OFDM Based Passive Radar for Slowly Moving Targets Detection. IEEE Sens. J. 2020, 20, 9079–9090. [Google Scholar] [CrossRef]
- Liu, Y.; Liao, G.; Xu, J.; Yang, Z.; Yin, Y. Improving Detection Performance of Passive MIMO Radar by Exploiting the Preamble Information of Communications Signal. IEEE Syst. J. 2021, 15, 4391–4402. [Google Scholar] [CrossRef]
- Li, Z.; Huang, C.; Sun, Z.; An, H.; Wu, J.; Yang, J. BeiDou-Based Passive Multistatic Radar Maritime Moving Target Detection Technique via Space-Time Hybrid Integration Processing. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5802313. [Google Scholar] [CrossRef]
- Howland, P.E.; Maksimimuk, D.; Reitsma, G. FM radio based bistatic radar. IET Radar Sonar. Navig. 2005, 152, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Edrich, M.; Schroeder, A.; Winkler, V. Design and performance evaluation of a mature FM/DAB/DVB-T multi-illuminator passive radar system. IET Radar Sonar. Navig. 2014, 8, 114–122. [Google Scholar] [CrossRef]
- Coleman, C.; Yardley, H. Passive bistatic radar based on target illuminations by digital audio broadcasting. IET Radar Sonar. Navig. 2008, 2, 366–375. [Google Scholar] [CrossRef]
- Gómez-del-Hoyo, P.-J.; Jarabo-Amores, M.-P.; Mata-Moya, D.; del-Rey-Maestre, N.; Rosa-Zurera, M. DVB-T receiver independent of Channel allocation, with frequency offset compensation for improving resolution in low cost passive radar. IEEE Sens. J. 2020, 20, 14958–14974. [Google Scholar] [CrossRef]
- Colone, F.; Falcone, P.; Bongioanni, C.; Lombardo, P. WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results. IEEE Trans. Aerosp. Electron. Syst. 2012, 48, 1061–1079. [Google Scholar] [CrossRef]
- Tan, D.K.P.; Sun, H.; Lu, Y.; Lesturgie, M.; Chan, H.L. Passive radar using Global System for Mobile communication signal: Theory, implementation and measurements. IET Radar Sonar. Navig. 2005, 152, 116–123. [Google Scholar] [CrossRef]
- Sun, H.; Tan, D.K.P.; Lu, Y. Aircraft target measurements using A GSM-based passive radar. In Proceedings of the 2008 IEEE Radar Conference, Rome, Italy, 26–30 May 2008; pp. 1–6. [Google Scholar] [CrossRef]
- Salah, A.A.; Raja Abdullah, R.S.A.; Ismail, A.; Hashim, F.; Abdul Aziz, N.H. Experimental study of LTE signals as illuminators of opportunity for passive bistatic radar applications. IET Radar Sonar. Navig. 2014, 50, 545–547. [Google Scholar] [CrossRef]
- Geng, Z.; Xu, R.; Deng, H. LTE-based multistatic passive radar system for UAV detection. IET Radar Sonar. Navig. 2020, 14, 1088–1097. [Google Scholar] [CrossRef]
- Salah, A.A. Feasibility study of LTE signal as a new illuminators of opportunity for passive radar applications. In Proceedings of the 2013 IEEE International RF and Microwave Conference (RFM), Penang, Malaysia, 9–11 December 2013; pp. 258–262. [Google Scholar] [CrossRef]
- Samczyński, P.; Abratkiewicz, K.; Płotka, M.; Zieliński, T.P.; Wszołek, J.; Hausman, S.; Korbel, P.; Ksiȩżyk, A. 5G Network-Based Passive Radar. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5108209. [Google Scholar] [CrossRef]
- Sun, H.; Tan, D.K.P.; Lu, Y.; Lesturgie, M. Applications of passive surveillance radar system using cell phone base station illuminators. IEEE Aerosp. Electron. Syst. 2010, 25, 10–18. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, X.; Liao, K. Co-Channel Interference Suppression for LTE Passive Radar Based on Spatial Feature Cognition. Sensors 2022, 22, 117. [Google Scholar] [CrossRef]
- Abdullah, R. Experimental investigation on target detection and tracking in passive radar using long-term evolution signal. IET Radar Sonar. Navig. 2016, 10, 577–585. [Google Scholar] [CrossRef]
- Abdullah, R. Ground moving target detection using LTE-based passive radar. In Proceedings of the 2015 International Conference on Radar, Antenna, Microwave, Electronics and Telecommunications (ICRAMET), Bandung, Indonesia, 5–7 October 2015; pp. 70–75. [Google Scholar] [CrossRef]
- Lingadevaru, P.; Pardhasaradhi, B.; Srihari, P.; Sharma, G. Analysis of 5G New Radio Waveform as an Illuminator of Opportunity for Passive Bistatic Radar. In Proceedings of the 2021 National Conference on Communications (NCC), Kanpur, India, 27–30 July 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Abdullah, R.S.A.R.; Salah, A.A.; Ismail, A.; Hashim, F.; Rashid, N.E.A.; Aziz, N.H.A. LTE-Based Passive Bistatic Radar System for Detection of Ground-Moving Targets. Etri. J. 2016, 38, 302–313. [Google Scholar] [CrossRef]
- Kiviranta, M.; Moilanen, I.; Roivainen, J. 5G Radar: Scenarios, Numerology and Simulations. In Proceedings of the 2019 International Conference on Military Communications and Information Systems (ICMCIS), Budva, Montenegro, 19 September 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Griffiths, H.; Baker, C. The Signal and Interference Environment in Passive Bistatic Radar. In Proceedings of the 2007 Information, Decision and Control, Adelaide, SA, Australia, 12–14 February 2007; pp. 1–10. [Google Scholar] [CrossRef]
- Lü, M.; Yi, J.; Wan, X.; Zhan, W. Cochannel Interference in DTMB-Based Passive Radar. IEEE Trans. Aerosp. Electron. Syst. 2019, 55, 2138–2149. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, X.; Zhong, L. Interference-to-noise ratio estimation in long-term evolution passive radar based on cyclic auto-correlation. Electron. Lett. 2021, 57, 375–377. [Google Scholar] [CrossRef]
- Lü, X.; Zhang, H.; Liu, Z.; Sun, Z.; Liu, P. Research on co-channel base station interference suppression method of passive radar based on LTE signal. J. Electron. Inf. Technol. 2019, 41, 2123–2130. (In Chinese) [Google Scholar] [CrossRef]
- Wielgo, M.; Krysik, P.; Klincewicz, K.; Maslikowski, L.; Rzewuski, S.; Kulpa, K. Doppler only localization in GSM-based passive radar. In Proceedings of the 2014 International Radar Conference, Lille, France, 13–17 October 2014; pp. 1–6. [Google Scholar] [CrossRef]
- Shen, J.; Yi, J.; Wan, X.; Cheng, F.; Zhang, W. DOA Estimation Considering Effect of Adaptive Clutter Rejection in Passive Radar. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 5108913. [Google Scholar] [CrossRef]
- Shao, X.; Hu, T.; Xiao, Z.; Wei, Y.; Wang, H. A Co-channel Interference Suppression Algorithm for LTE-based Passive Radar. Acta Armamentarii. 2021, 42, 1670–1679. [Google Scholar] [CrossRef]
- Lu, K.; Yang, J.; Zhang, L. Extraction of Direct Signal in GSM Based Passive Bistatic Radar. Acta Armamentarii. 2014, 35, 280–284. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Jiang, J.; Liao, K.; Xie, N. Target Detection and DOA Estimation for Passive Bistatic Radar in the Presence of Residual Interference. Remote Sens. 2022, 14, 1044. [Google Scholar] [CrossRef]
- Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array via Virtual Array Interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [Google Scholar] [CrossRef]
- Kim, S.-J.; Koh, K.; Lustig, M.; Boyd, S.; Gorinevsky, D. An interior-point method for large-scale l1-regularized LSs. IEEE J. Sel. Top. Signal Process. 2007, 1, 606–617. [Google Scholar] [CrossRef]
- Elgendy, O.A.; Ismail, M.H.; Elsayed, K. On the relay placement problem in a multi-cell LTE-Advanced system with co-channel interference. In Proceedings of the 2012 IEEE 8th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Barcelona, Spain, 8–10 October 2012; pp. 300–307. [Google Scholar] [CrossRef]
- Colone, F.; O’Hagan, D.W.; Lombardo, P.; Baker, C.J. A Multistage Processing Algorithm for Disturbance Removal and Target Detection in Passive Bistatic Radar. IEEE Trans. Aerosp. Electron. Syst. 2009, 45, 698–772. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Wang, H.; Liao, K.; Ouyang, S.; Gong, Y. Spatial Spectrum Estimation of Co-Channel Direct Signal in Passive Radar Based on Coprime Array. Remote Sens. 2022, 14, 5308. https://doi.org/10.3390/rs14215308
Xu H, Wang H, Liao K, Ouyang S, Gong Y. Spatial Spectrum Estimation of Co-Channel Direct Signal in Passive Radar Based on Coprime Array. Remote Sensing. 2022; 14(21):5308. https://doi.org/10.3390/rs14215308
Chicago/Turabian StyleXu, Haodong, Haitao Wang, Kefei Liao, Shan Ouyang, and Yanyun Gong. 2022. "Spatial Spectrum Estimation of Co-Channel Direct Signal in Passive Radar Based on Coprime Array" Remote Sensing 14, no. 21: 5308. https://doi.org/10.3390/rs14215308
APA StyleXu, H., Wang, H., Liao, K., Ouyang, S., & Gong, Y. (2022). Spatial Spectrum Estimation of Co-Channel Direct Signal in Passive Radar Based on Coprime Array. Remote Sensing, 14(21), 5308. https://doi.org/10.3390/rs14215308