Evaluating Latent-Heat-Nudging Schemes and Radar forward Operator Settings for a Convective Summer Period over Germany Using the ICON-KENDA System
Abstract
:1. Introduction
2. Model, Observations, and Methodology
3. Results
3.1. Experimental Design
3.2. Verification Method
3.3. Evaluation of the LHN Schemes
3.4. Evaluation of the Radar Forward Operator
4. Experimental Design and Results of Data Assimilation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schraff, C.; Reich, H.; Rhodin, A.; Schomburg, A.; Stephan, K.; Periáñez, A.; Potthast, R. Kilometre-Scale Ensemble Data Assimilation for the COSMO Model (KENDA). Q. J. R. Meteorol. Soc. 2016, 142, 1453–1472. [Google Scholar] [CrossRef]
- Hunt, B.R.; Kostelich, E.J.; Szunyogh, I. Efficient data assimilation for Spatiotemporal Chaos: A Local Ensemble Transform Kalman Filter. Phys. D Nonlinear Phenom. 2007, 230, 112–126. [Google Scholar] [CrossRef] [Green Version]
- Stephan, K.; Klink, S.; Schraff, C. Assimilation of radar-derived rain rates into convective-scale model COSMO-DE at DWD. Q. J. R. Meteorol. Soc. 2008, 134, 1315–1326. [Google Scholar] [CrossRef]
- Huo, Z.; Liu, Y.; Wei, M.; She, Y.; Fang, C.; Shu, Z.; Li, Y. Hydrometeor and Latent Heat Nudging for Radar Reflectivity Assimilation: Response to the Model States and Uncertainties. Remote Sens. 2021, 13, 3821. [Google Scholar] [CrossRef]
- Zeng, Y.; Li, H.; Feng, Y.; Blahak, U.; de Lozar, A.; Luo, J.; Min, J. Study on Sensitivity of Observation Error Statistics of Doppler Radars to the Radar forward Operator in convective-scale Data Assimilation. Remote Sens. 2022, 14, 3685. [Google Scholar] [CrossRef]
- Zeng, Y. Efficient Radar Forward Operator for Operational Data Assimilation within the COSMO-Model. Ph.D. Thesis, Karlsruhe Insititute of Technology, Karlsruhe, Germany, 2013. [Google Scholar]
- Zeng, Y.; Blahak, U.; Neuper, M.; Jerger, D. Radar Beam Tracing Methods Based on Atmospheric Refractive Index. J. Atmos. Ocean. Technol. 2014, 31, 2650–2670. [Google Scholar] [CrossRef]
- Zeng, Y.; Blahak, U.; Jerger, D. An efficient modular volume-scanning radar forward operator for NWP models: Description and coupling to the COSMO model. Q. J. R. Meteorol. Soc. 2016, 142, 3234–3256. [Google Scholar] [CrossRef]
- Blahak, U. RADAR_MIE_LM and RADAR_MIELIB—Calculation of Radar Reflectivity from Model Output. COSMO Technical Report No. 28, Consortium for Small Scale Modeling. 2016. Available online: http://www.cosmo-model.org/content/model/documentation/techReports/cosmo/docs/techReport28.pdf (accessed on 20 August 2022).
- Blahak, U.; de Lozar, A. EMVORADO—Efficient Modular Volume scan RADar Operator. A User’s Guide; Deutscher Wetterdienst: Offenbach, Germany, 2021. [Google Scholar]
- Geiss, S.; Scheck, L.; de Lozar, A.; Weissmann, M. Understanding the model representation of clouds based on visible and infrared satellite observations. Atmos. Chem. Phys. 2021, 21, 12273–12290. [Google Scholar] [CrossRef]
- Scheck, L.; Frerebeau, P.; Buras-Schnell, R.; Mayer, B. A fast radiative transfer method for the simulation of visible satellite imagery. J. Quant. Spectrosc. Radiat. Transf. 2016, 175, 54–67. [Google Scholar] [CrossRef]
- Scheck, L.; Weissmann, M.; Mayer, B. Efficient Methods to Account for Cloud-Top Inclination and Cloud Overlap in Synthetic Visible Satellite Images. J. Atmos. Ocean. Technol. 2018, 35, 665–685. [Google Scholar] [CrossRef]
- Desroziers, G.; Berre, L.; Chapnik, B.; Poli, P. Diagnosis of observation, background and analysis-error statistics in observation space. Q. J. R. Meteorol. Soc. 2005, 131, 3385–3396. [Google Scholar] [CrossRef]
- Lin, Y.; Farley, R.D.; Orville, H.D. Bulk parameterization of the snow field in a cloud model. J. Clim. Appl. Meteor. 1983, 22, 1065–1092. [Google Scholar] [CrossRef]
- Reinhardt, T.; Seifert, A. A three-category ice scheme for LMK. COSMO Newsl. 2006, 6, 115–120. [Google Scholar]
- Raschendorfer, M. The new turbulence parametrization of LM. COSMO Newsl. 2001, 1, 89–97. [Google Scholar]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Weather Rev. 1989, 117, 1779–1799. [Google Scholar] [CrossRef]
- Oguchi, T. Electromagnetic wave propagation and scattering in rain and other hydrometeors. Proc. IEEE 1983, 71, 1029–1078. [Google Scholar] [CrossRef]
- Maxwell-Garnett, J.C. Colours in metal glasses and in metallic films. Proc. R. Soc. Lond. 1904, 203, 385–420. [Google Scholar]
- Bruggemann, D.A.G. Brechung verschiender physikalischer Konstanten von heteogenes Substanzen I. Dielektrizitätskonstanten und Leitfähigkeiten der Misachkörper aus isotropen Substanzen. Ann. Phys. 1935, 416, 636–664. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Rundle, D.; Rayer, P.; Havemann, S.; Matricardi, M.; Geer, A.; Lupu, C.; Brunel, P.; Vidot, J. RTTOV v12 Science and Validation Report. Technical Report. 2017. Available online: https://nwp-saf.eumetsat.int/site/download/documentation/rtm/docs_rttov12/rttov12_svr.pdf (accessed on 20 August 2022).
- Weston, P.P.; Bell, W.; Eyre, J.R. Accounting for correlated error in the assimilation of high-resolution sounder data. Q. J. R. Meteorol. Soc. 2014, 140, 2420–2429. [Google Scholar] [CrossRef]
- Lange, H.; Janjić, T. Assimilation of Mode-S EHS Aircraft Observations in COSMO-KENDA. Mon. Weather Rev. 2016, 144, 1697–1711. [Google Scholar] [CrossRef]
- Bormann, N.; Bonavita, M.; Dragani, R.; Eresmaa, R.; Matricardi, M.; McNally, A. Enhancing the impact of IASI observations through an updated observation-error covariance matrix. Q. J. R. Meteorol. Soc. 2016, 142, 1767–1780. [Google Scholar] [CrossRef]
- Zeng, Y.; Janjic, T.; Feng, Y.; Blahak, U.; de Lozar, A.; Bauernschubert, E.; Stephan, K.; Min, J. Interpreting estimated Observation Error Statistics of Weather Radar Measurements using the ICON-LAM-KENDA System. Atmos. Meas. Technol. 2021, 14, 5735–5756. [Google Scholar] [CrossRef]
- Yuter, S.E.; Houze, R.A. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Weather Rev. 1995, 123, 1941–1963. [Google Scholar] [CrossRef]
- Illingworth, A.J.; Hogan, R.J.; O’connor, E.J.; Bouniol, D.; Brooks, M.E.; Delanoe, J.; Donovan, D.; Eastment, J.; Gaussiat, N.; Goddard, J.; et al. Cloudnet: Continuous evaluation of cloud profiles in seven operational models using ground-based observations. Bull. Am. Meteorol. Soc. 2007, 88, 883–898. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Lin, W.; Klein, S.; Bacmeister, J.; Bony, S.; Cederwall, R.; Del Genio, A.; Hack, J.; Loeb, N.; Lohmann, U.; et al. Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements. J. Geophys. Res. 2005, 110, D15S02. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.L. Spatially and temporally varing adaptive covariance inflation for ensemble filters. Tellus 2009, 61A, 72–83. [Google Scholar] [CrossRef]
- Zhang, F.; Snyder, C.; Sun, J. Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter. Mon. Weather Rev. 2004, 132, 1238–1253. [Google Scholar] [CrossRef]
- Zeng, Y.; Janjić, T.; de Lozar, A.; Blahak, U.; Reich, H.; Keil, C.; Seifert, A. Representation of model error in convective-scale data assimilation: Additive noise, relaxation methods and combinations. J. Adv. Model. Earth Syst. 2018, 10, 2889–2911. [Google Scholar] [CrossRef] [Green Version]
- Waller, J.A.; Bauernschubert, E.; Dance, S.L.; Nichols, N.K.; Potthast, R.; Simonin, D. Observation Error Statistics for Doppler Radar Radial Wind Superobservations Assimilated into the DWD COSMO-KENDA System. Mon. Weather Rev. 2019, 147, 3351–3364. [Google Scholar] [CrossRef]
EXP | LHN | Beam Broadening | Scattering Scheme |
---|---|---|---|
E_mie1_nolhn | × | × | Mie1 |
E_mie1_lhn1 | LHN1 | × | Mie1 |
E_mie1_lhn2 | LHN2 | × | Mie1 |
E_ray_lhn2_bb | LHN2 | ✓ | Rayleigh |
E_mie1_lhn2_bb | LHN2 | ✓ | Mie1 |
E_mie2_lhn2_bb | LHN2 | ✓ | Mie2 |
EXP | Attenuation | LHN | Beam Broadening | Scattering Scheme |
---|---|---|---|---|
DA_dwd | ✓ | LHN2 | × | Mie1 |
DA_mie1 | × | LHN2 | ✓ | Mie1 |
DA_ray | × | LHN2 | ✓ | Rayleigh |
DA_mie2 | × | LHN2 | ✓ | Mie2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeng, Y.; Feng, Y.; de Lozar, A.; Stephan, K.; Scheck, L.; Khosravianghadikolaei, K.; Blahak, U. Evaluating Latent-Heat-Nudging Schemes and Radar forward Operator Settings for a Convective Summer Period over Germany Using the ICON-KENDA System. Remote Sens. 2022, 14, 5295. https://doi.org/10.3390/rs14215295
Zeng Y, Feng Y, de Lozar A, Stephan K, Scheck L, Khosravianghadikolaei K, Blahak U. Evaluating Latent-Heat-Nudging Schemes and Radar forward Operator Settings for a Convective Summer Period over Germany Using the ICON-KENDA System. Remote Sensing. 2022; 14(21):5295. https://doi.org/10.3390/rs14215295
Chicago/Turabian StyleZeng, Yuefei, Yuxuan Feng, Alberto de Lozar, Klaus Stephan, Leonhard Scheck, Kobra Khosravianghadikolaei, and Ulrich Blahak. 2022. "Evaluating Latent-Heat-Nudging Schemes and Radar forward Operator Settings for a Convective Summer Period over Germany Using the ICON-KENDA System" Remote Sensing 14, no. 21: 5295. https://doi.org/10.3390/rs14215295
APA StyleZeng, Y., Feng, Y., de Lozar, A., Stephan, K., Scheck, L., Khosravianghadikolaei, K., & Blahak, U. (2022). Evaluating Latent-Heat-Nudging Schemes and Radar forward Operator Settings for a Convective Summer Period over Germany Using the ICON-KENDA System. Remote Sensing, 14(21), 5295. https://doi.org/10.3390/rs14215295