Exploring Spatial Network Structure of the Metropolitan Circle Based on Multi-Source Big Data: A Case Study of Hangzhou Metropolitan Circle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.2.1. Data Sources
2.2.2. Data Preprocessing
2.3. Analytical Framework and Methods
2.3.1. Flow Data Model
- (1)
- Human flow
- (2)
- Goods flow
- (3)
- Capital flow
- (4)
- Information flow
- (5)
- Traffic flow
2.3.2. Cluster Analysis
2.3.3. Centrality Analysis
2.3.4. QAP Correlation Analysis
2.3.5. Cohesive Subgroup Analysis
3. Results
3.1. The Intensity Structure of Network Nodes
3.2. The Hierarchical Structure of Network Connections
3.3. The Spatial Correlation Structure of Networks
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taylor, P.J.; Derudder, B. World City Network: A Global Urban Analysis, 2nd ed.; Routledge: Abingdon, UK, 2015. [Google Scholar]
- Shen, L.Z.; Gu, C.L.; Zhen, F. A study on the structural modes of space of flows. Urban Plan. Forum 2010, 5, 26–32. [Google Scholar]
- Fang, C.L. China’s urban agglomeration and metropolitan area construction under the new development pattern. Econ. Geogr. 2021, 41, 1–7. [Google Scholar]
- Fridemann, J.R. The world city hypothesis. Dev. Chang. 1986, 17, 69–83. [Google Scholar] [CrossRef]
- Yi, R.; Xue, D.; Wang, B. Integration of the Pearl River Delta in 1999-2019: An analysis of news media on government portal site. Hum. Geogr. 2022, 37, 113–121. [Google Scholar]
- Dadashpoor, H.; Malekzadeh, N. Driving factors of formation, development, and change of spatial structure in metropolitan areas: A systematic review. J. Urban Manag. 2020, 9, 286–297. [Google Scholar] [CrossRef]
- He, D.; Yin, Q.; Zheng, M.; Gao, P. Transport and regional economic integration: Evidence from the Chang-Zhu-tan region in China. Transp. Policy 2019, 79, 193–203. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, A.; Sun, Z. How regional economic integration influence on urban land use efficiency? A case study of Wuhan metropolitan area, China. Land Use Policy 2020, 90, 104329. [Google Scholar] [CrossRef]
- Cai, W.; Smith, B.; Wang, M. Simulating the urban spatial structure with spatial interaction: A case study of urban polycentricity under different scenarios. Comput. Environ. Urban Syst. 2021, 89, 101677. [Google Scholar]
- Chen, T.; Hui, E.; Wu, J.; Lang, W.; Li, X. Identifying urban spatial structure and urban vibrancy in highly dense cities using georeferenced social media data. Habitat Int. 2019, 89, 102005. [Google Scholar] [CrossRef]
- Ke, S.Z.; Feser, E. Count on the growth pole strategy for regional economic growth? spread-backwash effects in greater central China. Reg. Stud. 2010, 44, 1131–1147. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Chen, Y.R.; Zhao, L. The analysis of metropolitan areas spatial self-organization evolution in China based on the theory of central place. Econ. Geogr. 2014, 34, 44–51. [Google Scholar]
- Christaller, W. Central Places in Southern Germany; Prentice Hall: Englewood Cliffs, NJ, USA, 1966. [Google Scholar]
- Friedmann, J.R. Regional Development Policy: A Case Study of Venezuela; MIT Press: Cambridge, UK, 1966. [Google Scholar]
- Francois, P. Economic space: Theory and applications. Q. J. Econ. 1950, 64, 89–104. [Google Scholar]
- Lu, Y.Q. The mechanism of the model of dual-nuclei structure. Acta Geogr. Sin. 2002, 57, 85–95. [Google Scholar]
- Ioannides, Y.; Skouras, S. US city size distribution: Robustly Pareto, but only in the tail. J. Urban Econ. 2013, 73, 18–29. [Google Scholar] [CrossRef]
- Van Meeteren, M.; Poorthuis, A. Christaller and “big data”: Recalibrating central place theory via the geoweb. Urban Geogr. 2018, 39, 122–148. [Google Scholar] [CrossRef] [Green Version]
- Castells, M. The Information City: Information Technology, Economic Restructuring and the Urban-Regional Process; Blackwell: Oxford, MS, USA, 1989. [Google Scholar]
- Meijers, E. From central place to network model: Theory and evidence of a paradigm change. Tijdschr. Voor Econ. En Soc. Geogr. 2007, 98, 245–259. [Google Scholar] [CrossRef]
- Wang, S.J.; Feng, Z.X.; Liu, D.P.; Zhang, Z.W. Basic perspective and preliminary framework for the theoretical innovation and development of Central Place Theory in new times. Prog. Geogr. 2012, 31, 1256–1263. [Google Scholar]
- Batten, D.F. Network cities: Creative urban agglomerations for the 21st century. Urban Stud. 1995, 32, 313–327. [Google Scholar] [CrossRef]
- Wang, Y.; Niu, X.Y.; Song, X.D. Research progress of regional spatial structure under the perspective of space of flow. Urban Plan. Int. 2017, 32, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Chong, Z.; Pan, S. Understanding the structure and determinants of city network through intra-firm service relationships: The case of Guangdong-Hong Kong-Macao Greater Bay Area. Cities 2020, 103, 102738. [Google Scholar] [CrossRef]
- Sun, Q.; Tang, F.; Tang, Y. An economic tie network-structure analysis of urban agglomeration in the middle reaches of Changjiang River based on SNA. J. Geogr. Sci. 2015, 25, 739–755. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P.J. Specification of the world city network. Geogr. Anal. 2001, 33, 181–194. [Google Scholar] [CrossRef]
- Hall, P.G.; Pain, K. Polycentric Metrop. Learn. Mega-City Reg. Europe; EarthScan: London, UK, 2006. [Google Scholar]
- Yeh, A.G.; Yang, F.F.; Wang, J. Producer service linkages and city connectivity in the mega-city region of China: A case study of the Pearl River Delta. Urban Stud. 2015, 52, 2458–2482. [Google Scholar] [CrossRef]
- Zhao, M.; Derudder, B.; Huang, J. Examining the transition processes in the Pearl River Delta polycentric mega-city region through the lens of corporate networks. Cities 2017, 60, 147–155. [Google Scholar] [CrossRef]
- Limtanakool, N.; Schwanen, T.; Dijst, M. Developments in the Dutch urban system on the basis of flows. Reg. Stud. 2009, 43, 179–196. [Google Scholar] [CrossRef]
- Wang, S.; Song, Y.; Wen, H.; Li, J. Network structure analysis of urban agglomeration in the Yangtze River Economic Belt under the perspective of bidirectional economic connection: Based on time distance and social network analysis method. Econ. Geogr. 2019, 39, 73–81. [Google Scholar]
- Xu, J.; Li, A.; Li, D.; Liu, Y.; Du, Y.; Pei, T.; Ma, T.; Zhou, C. Difference of urban development in China from the perspective of passenger transport around Spring Festival. Appl. Geogr. 2017, 87, 85–96. [Google Scholar] [CrossRef]
- Huang, Y.; Shi, K.; Zong, H.; Zhou, T.; Shen, J. Exploring spatial and temporal connection patterns among the districts in Chongqing based on highway passenger flow. Remote Sens. 2020, 12, 27. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhao, M. Research on the city network of Guangdong, Hongkong and Macao from the perspective of information flow: Analysis based on Baidu index. J. Reg. City Plan. 2018, 29, 281. [Google Scholar] [CrossRef]
- Yang, H.; Dijst, M.; Witte, P.; Ginkel, H.V.; Wang, J. Comparing passenger flow and time schedule data to analyze High-Speed Railways and urban networks in China. Urban Stud. 2019, 56, 1267–1287. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Dobruszkes, F.; Wang, J.; Dijst, M.; Witte, P. Comparing China’s urban systems in high-speed railway and airline networks. J. Transp. Geogr. 2018, 68, 233–244. [Google Scholar] [CrossRef]
- Zhang, H.; Zhuge, C.; Jia, J.; Shi, B.; Wang, W. Green travel mobility of dockless bike-sharing based on trip data in big cities: A spatial network analysis. J. Clean. Prod. 2021, 313, 127930. [Google Scholar] [CrossRef]
- Yu, H.; Yang, J.; Li, T.; Jin, Y.; Sun, D. Morphological and functional polycentric structure assessment of megacity: An integrated approach with spatial distribution and interaction. Sustain. Cities Soc. 2022, 80, 103800. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Cheung, D.M.; Zhang, T. Evaluating the institutional performance of the Pearl River Delta integration policy through intercity cooperation network analysis. Cities 2018, 81, 131–144. [Google Scholar] [CrossRef]
- Fang, C.; Yu, X.; Zhang, X.; Fang, J.; Liu, H. Big data analysis on the spatial networks of urban agglomeration. Cities 2020, 102, 102735. [Google Scholar] [CrossRef]
- Cai, J.; Huang, B.; Song, Y. Using multi-source geospatial big data to identify the structure of polycentric Cities. Remote Sens. Environ. 2017, 202, 210–221. [Google Scholar] [CrossRef]
- Liu, X.; Yan, X.; Wang, W.; Titheridge, H.; Wang, R.; Liu, Y. Characterizing the polycentric spatial structure of Beijing Metropolitan Region using carpooling big data. Cities 2021, 109, 103040. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, S.; Zhang, K.; Ma, F.; Guo, X.; Li, T. Spatial pattern of urban system based on gravity model and whole network analysis in eight urban agglomerations of China. Math. Probl. Eng. 2019, 2019, 6509726. [Google Scholar] [CrossRef]
- Zhou, H.L.; Wang, F.Y. Research on structure characteristics of the inter-provincial tourist flow spatial network in China based on the modified gravity model. Geogr. Res. 2020, 39, 669–681. [Google Scholar]
- Zhang, P.; Zhao, Y.; Zhu, X.; Cai, Z.; Xu, J.; Shi, S. Spatial structure of urban agglomeration under the impact of high-speed railway construction: Based on the social network analysis. Sustain. Cities Soc. 2020, 62, 102404. [Google Scholar] [CrossRef]
- He, D.; Chen, Z.; Pei, T.; Zhou, J. The regional and local scale evolution of the spatial structure of high-speed railway networks—A case study focused on Beijing-Tianjin-Hebei Urban Agglomeration. ISPRS Int. J. Geo-Inf. 2021, 10, 543. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, Y.; Ren, F.; Zhu, R.; Wang, P.; Du, T.; Du, Q. Analysing the spatial configuration of urban bus networks based on the geospatial network analysis method. Cities 2020, 96, 102406. [Google Scholar] [CrossRef]
- Huang, L.; Hu, D.; Zhao, Y. Research progress on urban agglomerations from the perspective of “flow space”. Sci. Technol. Ind. 2022, 22, 194–200. [Google Scholar]
- Long, Y.; Liu, L. Four Transformations of Chinese quantitative urban research in the new data environment. Urban Plan. Int. 2017, 32, 64–73. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Fang, C.; Zhou, L.; Zhu, J. Measuring megaregional structure in the Pearl River Delta by mobile phone signaling data: A complex network approach. Cities 2020, 104, 102809. [Google Scholar] [CrossRef]
- Zhou, Y.; He, X.; Zhu, Y. Identification and evaluation of the polycentric urban structure: An empirical analysis based on multi-source big data fusion. Remote Sens. 2022, 14, 2705. [Google Scholar] [CrossRef]
- Lou, G.; Chen, Q.; He, K.; Zhou, Y.; Shi, Z. Using nighttime light data and POI big data to detect the urban centers of Hangzhou. Remote Sens. 2019, 11, 1821. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Yuan, X.; Zhang, D.; Zhang, R.; Li, M.; Zhou, C. Delineation of urban agglomeration boundary based on multisource big data fusion—A case study of Guangdong–Hong Kong–Macao Greater Bay Area (GBA). Remote Sens. 2021, 13, 1801. [Google Scholar] [CrossRef]
- Martí, P.; Serrano-Estrada, L.; Nolasco-Cirugeda, A. social media data: Challenges, opportunities and limitations in urban studies. Comput. Environ. Urban Syst. 2019, 74, 161–174. [Google Scholar] [CrossRef]
- Jendryke, M.; Balz, T.; Liao, M. Big location-based social media messages from China’s Sina Weibo network: Collection, storage, visualization, and potential ways of analysis. Trans. GIS 2017, 21, 825–834. [Google Scholar] [CrossRef]
- Tu, W.; Zhu, T.; Xia, J.; Zhou, Y.; Lai, Y.; Jiang, J. Portraying the spatial dynamics of urban vibrancy using multisource urban big data. Comput. Environ. Urban Syst. 2020, 80, 101428. [Google Scholar] [CrossRef]
- Cui, H.; Wu, L.; Hu, S.; Lu, R.; Wang, S. Recognition of urban functions and mixed use based on residents’ movement and topic generation model: The case of Wuhan, China. Remote Sens. 2020, 12, 2889. [Google Scholar] [CrossRef]
- Zhang, W.; Chong, Z.; Li, X.; Nie, G. Spatial patterns and determinant factors of population flow networks in China: Analysis on Tencent location big data. Cities 2020, 99, 102640. [Google Scholar] [CrossRef]
- Jia, T.; Luo, X.; Li, X. Delineating a hierarchical organization of ranked urban clusters using a spatial interaction network. Comput. Environ. Urban Syst. 2021, 87, 101617. [Google Scholar] [CrossRef]
- Devriendt, L.; Boulton, A.; Brunn, S.; Derudder, B.; Witlox, F. Searching for cyberspace: The position of major cities in the information age. J. Urban Technol. 2011, 18, 73–92. [Google Scholar] [CrossRef]
- Deng, C.; Song, X.; Xie, B.; Li, M.; Zhong, X. City network link analysis of urban agglomeration in the middle Yangtze River basin based on the Baidu post bar data. Geogr. Res. 2018, 37, 1181–1192. [Google Scholar]
- Matthiessen, C.W.; Schwarz, A.W.; Find, S. World cities of scientific knowledge: Systems, networks and potential dynamics. An analysis based on bibliometric indicators. Urban Stud. 2010, 47, 1879–1897. [Google Scholar] [CrossRef]
- Guo, J.; Qin, Y. Coupling characteristics of coastal ports and urban network systems based on flow space theory: Empirical evidence from China. Habitat Int. 2022, 126, 102624. [Google Scholar] [CrossRef]
- Guo, W.; Liu, W. Study on the problems’ international reference and development path of constructing modern metropolitan circle. Econ. Probl. 2021, 8, 104–109. [Google Scholar]
- Wang, Z.; Hu, Y.; Zhu, P.; Qin, Y.; Jia, L. Ring aggregation pattern of metro passenger trips:A study using smart card data. Phys. A Stat. Mech. Its Appl. 2018, 491, 471–479. [Google Scholar] [CrossRef]
- Widhalm, P.; Yang, Y.; Ulm, M.; Athavale, S.; González, M. Discovering urban activity patterns in cell phone data. Transportation 2015, 42, 597–623. [Google Scholar] [CrossRef] [Green Version]
- Ye, Q.; Zhang, L.; Peng, P.; Huang, J. The network characteristics of urban agglomerations in the middle reaches of the Yangtze River based on Baidu migration data. Econ. Geogr. 2017, 37, 53–59. [Google Scholar]
- Verhetsel, A.; Sel, S. World maritime cities: From which cities do container shipping companies make decisions? Transp. Policy 2009, 16, 240–250. [Google Scholar] [CrossRef]
- Akhavan, M.; Ghiara, H.; Mariotti, I.; Sillig, C. Logistics global network connectivity and its determinants. A European City network analysis. J. Transp. Geogr. 2020, 82, 102624. [Google Scholar] [CrossRef]
- Wang, S.; Gao, S.; Wang, Y. Spatial structure of the urban agglomeration based on space of flows: The study of the Pearl River Delta. Geogr. Res. 2019, 38, 1849–1861. [Google Scholar]
- Arthur, S.; Beckfield, A.J. Power and position in the world city system. Am. J. Sociol. 2004, 109, 811–851. [Google Scholar]
- Van Oort, F.G.; Burger, M.J.; Raspe, O. On the economic foundation of theurban networkparadigm: Spatial integration, functional integration and economic complementarities within the Dutch Randstad. Urban Stud. 2010, 47, 725–748. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Xiu, C. Research on city network of northeast China based on space of flows. Areal Res. Dev. 2014, 33, 82–89. [Google Scholar]
- Zhen, F.; Cao, Y.; Qin, X.; Wang, B. Delineation of an urban agglomeration boundary based on Sina Weibo microblog “check-in” data: A case study of the Yangtze River Delta. Cities 2017, 60, 180–191. [Google Scholar] [CrossRef]
- Yao, W.; Zhou, J.; Chen, H.; Chen, Q. Spatial structure of regional network based on Internet public information flow. Econ. Geogr. 2017, 37, 10–16. [Google Scholar]
- Derudder, B.; Witlox, F. Mapping world city networks through airline flows:Context, relevance, and problems. J. Transp. Geogr. 2008, 16, 305–312. [Google Scholar] [CrossRef]
- Seya, H.; Zhang, J.; Chikaraishi, M.; Jiang, Y. Decisions on truck parking place and time on expressways: An analysis using digital tachograph data. Transportation 2018, 47, 555–583. [Google Scholar] [CrossRef] [Green Version]
- Qiu, J.; Liu, Y.; Chen, H.; Gao, F. Urban network structure of Guangdong-Hong Kong-Macao Greater Bay Area with the view of space of flows: A comparison between information flow and transportation flow. Econ. Geogr. 2019, 39, 7–15. [Google Scholar]
- Chen, X.; Wu, S. Research on the regional spatial pattern of Nanjing-Hefei double metropolitans: Based on the perspective of urban flow. East China Econ. Manag. 2021, 35, 35–44. [Google Scholar]
- Gu, W.; Ou, X.; Ye, L.; Yang, B. Spatial structure of urban agglomeration in the Yangtze River Delta based on the analysis of element flow. Trop. Geogr. 2015, 35, 833–841. [Google Scholar]
- Zhou, J.; Bi, X.; Zou, W. Driving mechanism of urban-rural integration in Huaihai Economic Zone: Based on the space of flow. J. Nat. Resour. 2020, 35, 1881–1896. [Google Scholar]
- Taylor, P.; Catalano, G.; Walker, D. Measurement of the world city network. Urban Stud. 2002, 39, 2367–2376. [Google Scholar] [CrossRef]
- Taylor, P.; Evans, D.; Pain, K. Application of the interlocking network model to mega-city-regions: Measuring polycentricity within and beyond city-regions. Reg. Stud. 2008, 42, 1079–1093. [Google Scholar] [CrossRef]
- Taylor, P.; Derudder, B.; Hoyler, M.; Ni, P.; Witlox, F. City-dyad analyses of China’s integration into the World City Network. Urban Stud. 2014, 51, 868–882. [Google Scholar] [CrossRef] [Green Version]
- Xing, L.; Du, S.; Sun, G.; Chen, Q. Analysis on network structure characteristics and its influencing factors in Hubei province based on the perspective of multi-dimensional feature flow. Resour. Environ. Yangtze Basin 2022, 1–13. Available online: http://kns.cnki.net/kcms/detail/42.1320.X.20220822.1731.004.html (accessed on 23 August 2022).
- Xiong, L.; Zhen, F.; Wang, B.; Xi, G. The research of the Yangtze River Delta core area’s city network characteristics based on Baidu index. Econ. Geogr. 2013, 33, 67–73. [Google Scholar]
- Wang, Z.; Yang, S.; Gong, F.; Liu, S. Identification of urban agglomerations deformation structure based on urban-flow space: A case study of the Yangtze River Delta urban agglomeration. Sci. Geogr. Sin. 2017, 37, 1337–1344. [Google Scholar]
- Liu, J. Introduction to Social Network Analysis; Social Sciences Academic Press: Beijing, China, 2004. [Google Scholar]
- Barnett, G.A. Encyclopedia of Social Networks; Sage Publications: London, UK, 2011. [Google Scholar]
- Liu, J. QAP: A method of measuring the relationship between “relationships”. Society 2007, 4, 164–174. [Google Scholar]
- Cidell, J. Cooperating on urban sustainability: A social network analysis of municipalities across Greater Melbourne. Urban Policy Res. 2020, 38, 150–172. [Google Scholar] [CrossRef]
- Kenneth, A.F. Identifying cohesive subgroups. Soc. Netw. 1995, 17, 27–56. [Google Scholar]
- Liu, J. Lectures on Whole Network Approach: A Practical Guide to Ucinet; Truth & Wisdom Press: Shanghai, China, 2009. [Google Scholar]
- Shi, L.; Bai, Y. Factor Agglomeration and diffusion, spatial network evolution and urban function orientation: Empirical evidence from 108 cities in the Yangtze River Economic Belt. Reg. Econ. Rev. 2022, 3, 107–117. [Google Scholar]
- Ren, Z. On the trend of the development of great and small cities of China. Urban Dev. Stud. 2010, 17, 1–7. [Google Scholar]
- Cao, H.; Ma, X.; Li, G. Characteristics and Changes of the Polycentric Spatial Structure in the Pearl River Delta Region. Areal Research and Development. Areal Res. Dev. 2014, 33, 12–18. [Google Scholar]
- Li, Z.; Wang, S.; Cheng, L.; Shi, X.; Guan, H.; Shu, C. Differences and relationship between population flow and transportation networks in Northeast China. Prog. Geogr. 2022, 41, 985–998. [Google Scholar] [CrossRef]
- Qin, J. A study on the governance framework and model of cooperation zone types metropolitan areas from the perspective of factor flow. Planners 2022, 38, 12–19. [Google Scholar]
- Liu, H.; Fang, C.; Sun, S. Digital inequality in provincial China. Environ. Plan. A 2017, 49, 2179–2182. [Google Scholar] [CrossRef]
Name | Definition | General Expressive Form | Data Source | Acquisition Time |
---|---|---|---|---|
Human flow | Human flow is the abbreviation of population movement, which refers to the migration phenomenon of the population moving from one location to any other location in geographic space within a certain period of time. | Mobile phone signaling data and daily train passenger data [65,66] | Baidu migration platform [67] | 1 October 2020, to 18 January 2021 |
Goods flow | Goods flow is the process of transferring goods from the place of supply to the place of receipt. | Container data and logistics company data [68,69] | Gaode Map [70] | 1 October 2020, to 18 January 2021 |
Capital flow | Capital flow is the flow process of funds, which usually occurs due to the transfer of goods or their ownership between members. | Enterprise organization data and interenterprise relationship data [71,72] | Gaode Map [73] | 1 October 2020, to 18 January 2021 |
Information flow | Information flow refers to information movement through the information infrastructure in the urban network. | Weibo punch card data and the Baidu index [74] | The search data of 58.com [75] | 1 October 2020, to 18 January 2021 |
Traffic flow | Traffic flow refers to the flow process of major transportation modes between cities through the corresponding transportation infrastructure. | Airline data and expressway data [76,77] | The Railway Customer Service Center of China and the route planning API provided by Gaode Map [78] | 1 October 2020, to 18 January 2021 |
A/B | Human Flow | Goods Flow | Capital Flow | Information Flow | Traffic Flow |
---|---|---|---|---|---|
Human flow | 1 | 0.5529 | 0.6943 | 0.5975 | 0.7260 |
Goods flow | 0.5529 | 1 | 0.8317 | 0.3309 | 0.2946 |
Capital flow | 0.6943 | 0.8317 | 1 | 0.4092 | 0.4622 |
Information flow | 0.5975 | 0.3309 | 0.4092 | 1 | 0.5257 |
Traffic flow | 0.7260 | 0.2946 | 0.4622 | 0.5257 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Hao, Q.; Chen, X.; Zhu, C.; Zhang, L.; Hong, M.; Wu, J.; Gan, M. Exploring Spatial Network Structure of the Metropolitan Circle Based on Multi-Source Big Data: A Case Study of Hangzhou Metropolitan Circle. Remote Sens. 2022, 14, 5266. https://doi.org/10.3390/rs14205266
Zhang J, Hao Q, Chen X, Zhu C, Zhang L, Hong M, Wu J, Gan M. Exploring Spatial Network Structure of the Metropolitan Circle Based on Multi-Source Big Data: A Case Study of Hangzhou Metropolitan Circle. Remote Sensing. 2022; 14(20):5266. https://doi.org/10.3390/rs14205266
Chicago/Turabian StyleZhang, Jing, Qi Hao, Xinming Chen, Congmou Zhu, Ling Zhang, Mengjia Hong, Jiexia Wu, and Muye Gan. 2022. "Exploring Spatial Network Structure of the Metropolitan Circle Based on Multi-Source Big Data: A Case Study of Hangzhou Metropolitan Circle" Remote Sensing 14, no. 20: 5266. https://doi.org/10.3390/rs14205266
APA StyleZhang, J., Hao, Q., Chen, X., Zhu, C., Zhang, L., Hong, M., Wu, J., & Gan, M. (2022). Exploring Spatial Network Structure of the Metropolitan Circle Based on Multi-Source Big Data: A Case Study of Hangzhou Metropolitan Circle. Remote Sensing, 14(20), 5266. https://doi.org/10.3390/rs14205266