The Evolution of Irrigation Effects on Agricultural Drought Mitigation in North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methodology
2.4. Analysis
3. Results
3.1. Inter-Annual Change in Agricultural Drought Affected Area Change
3.2. Decade Changes in Agricultural Drought Affected Area Change
3.3. The Topographic Influence on Changes of ADAC
3.4. The Impact of APEI on Changes of ADAC
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Ciais, P. Environmental science: Trends in ecosystem recovery from drought. Nature 2017, 548, 164–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, B.; Huang, J.; Fischerc, T.; Wang, Y.; Kundzewicz, Z.; Zhai, J.; Sun, H.; Wang, A.; Zeng, X.; Wang, G.; et al. Drought losses in China might double between the 1.5° C and 2.0° C warming. Proc. Natl. Acad. Sci. USA 2018, 115, 10600–10605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patrick, E. Drought characteristics and management in Central Asia and Turkey. In FAO Water Reports (FAO); Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; p. 114. [Google Scholar]
- Li, R.; Geng, S. Impacts of climate change on agriculture and adpative strategies in China. J. Integr. Agric. 2013, 12, 1402–1408. [Google Scholar] [CrossRef]
- Cook, B.I.; Ault, T.R.; Smerdon, J.E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 2015, 1, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Change 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Spinoni, J.; Vogt, J.; Naumann, G.; Barbosa, P.; Dosio, A. Will drought events become more frequent and severe in Europe? Int. J. Climatol. 2018, 38, 1718–1736. [Google Scholar] [CrossRef] [Green Version]
- Wei, Y.; Langford, J.; Willett, I.R.; Barlow, S.; Lyle, C. Is irrigated agriculture in the Murray Darling Basin well prepared to deal with reductions in water availability? Glob. Environ. Change-Hum. Policy Dimens. 2011, 21, 906–916. [Google Scholar] [CrossRef]
- Cancelliere, A.; Ancarani, A.; Rossi, G. Susceptibility of Water Supply Reservoirs to Drought Conditions. J. Hydrol. Eng. 1998, 3, 140–148. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Poon, J.P.H.; Liu, Y.; Liu, H. Anti-drought measures and their effectiveness: A study of farmers’ actions and government support in China. Ecol. Indic. 2018, 87, 285–295. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, X.; Sassenrath, G.F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat. Sci. Total Environ. 2015, 508, 331–342. [Google Scholar] [CrossRef]
- Masoero, F.; Gallo, A.; Giuberti, G.; Fiorentini, L.; Moschini, M. Effect of water-saving irrigation regime on whole-plant yield and nutritive value of maize hybrids. J. Sci. Food Agric. 2013, 93, 3040–3045. [Google Scholar] [CrossRef] [PubMed]
- Carter, M.R.; Little, P.D.; Mogues, T.; Negatu, W. Poverty Traps and Natural Disasters in Ethiopia and Honduras. World Dev. 2007, 35, 835–856. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, J.; Chang, J.; Zhang, R. Assessing the drought mitigation ability of the reservoir in the downstream of the Yellow River. Sci. Total Environ. 2019, 646, 1327–1335. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Clay, D.E.; Hansen, A.; Clay, S.A.; Schumacher, T.E. Water stress impact on transgenic drought-tolerant corn in the northern Great Plains. Agron. Soils Environ. Qual. 2013, 106, 125–130. [Google Scholar] [CrossRef] [Green Version]
- Grassini, P.; Yang, H.; Irmak, S.; Thorburn, J.; Burr, C.; Cassman, K.G. High-yield irrigated maize in the western U.S. Corn Belt: II. Irrigation management and crop water productivity. Field Crops Res. 2011, 120, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2006, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Geerts, S.; Raes, D. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas. Agric. Water Manag. 2009, 96, 1275–1284. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, N.; Bhuiyan, C.; Saha, A.K. Drought mitigation: Critical analysis and proposal for a new drought policy with special reference to Gujarat (India). Prog. Disaster Sci. 2020, 5, 100049. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bandyopadhyay, K.K.; Pradhan, S.; Singh, R.; Datta, S.P. Effects of irrigation, crop residue mulch and nitrogen management in maize (Zea mays L.) on soil carbon pools in a sandy loam soil of Indo-gangetic plain region. CATENA 2018, 165, 207–216. [Google Scholar] [CrossRef]
- Derpsch, R.; Franzluebbers, A.J.; Duiker, S.W.; Reicosky, D.C.; Koeller, K.; Friedrich, T.; Sturny, W.G.; Sá, J.C.M.; Weiss, K. Why do we need to standardize no-tillage research? Soil Tillage Res. 2014, 137, 16–22. [Google Scholar] [CrossRef]
- Mcdonald, R.I.; Girvetz, E.H. Two Challenges for U.S. Irrigation Due to Climate Change: Increasing Irrigated Area in Wet States and Increasing Irrigation Rates in Dry States. PLoS ONE 2013, 8, e65589. [Google Scholar] [CrossRef] [PubMed]
- Uwizeyimana, D.; Mureithi, S.M.; Karuku, G.; Kironchi, G. Effect of water conservation measures on soil moisture and maize yield under drought prone agro-ecological zones in Rwanda. Int. Soil Water Conserv. Res. 2018, 6, 214–221. [Google Scholar] [CrossRef]
- Hornbeck, R.; Keskin, P. The Historically Evolving Impact of the Ogallala Aquifer: Agricultural Adaptation to Groundwater and Drought. Am. Econ. J. Appl. Econ. 2014, 6, 190–219. [Google Scholar] [CrossRef] [Green Version]
- Troy, T.J.; Kipgen, C.; Pal, I. The impact of climate extremes and irrigation on US crop yields. Environ. Res. Lett. 2015, 10, 054013. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.A.; Abiodun, B.J.; Crespo, O. Impacts of drought on grape yields in Western Cape, South Africa. Theor. Appl. Climatol. 2016, 123, 117–130. [Google Scholar] [CrossRef]
- Li, X.; Kang, S.; Zhang, X.; Li, F.; Lu, H. Deficit irrigation provokes more pronounced responses of maize photosynthesis and water productivity to elevated CO2. Agric. Water Manag. 2018, 195, 71–83. [Google Scholar] [CrossRef]
- Zhang, T.; Simelton, E.; Huang, Y.; Shi, Y. A Bayesian assessment of the current irrigation water supplies capacity under projected droughts for the 2030s in China. Agric. For. Meteorol. 2013, 178, 56–65. [Google Scholar] [CrossRef]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effects on US maize and soybean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett. 2016, 11, 094021. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [Green Version]
- Brocca, L.; Tarpanelli, A.; Filippucci, P.; Dorigo, W.; Zaussinger, F.; Gruber, A.; Fernández-Prieto, D. How much water is used for irrigation? A new approach exploiting coarse resolution satellite soil moisture products. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 752–766. [Google Scholar] [CrossRef]
- Essaid, H.I.; Caldwell, R.R. Evaluating the impact of irrigation on surface water-groundwater interaction and stream temperature in an agricultural watershed. Sci. Total Environ. 2017, 599, 581–596. [Google Scholar] [CrossRef] [PubMed]
- Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Kendy, E.; Yu, Q.; Liu, C.M.; Shen, Y.J.; Sun, H.Y. Effect of soil water deficit on evapotranspiration, crop yield, and water use efficiency in the North China Plain. Agric. Water Manag. 2004, 64, 107–122. [Google Scholar]
- Fang, Q.; Ma, L.; Green, T.R.; Yu, Q.; Wang, T.; Ahuja, L.R. Water resources and water use efficiency in the North China Plain: Current status and agronomic management options. Agric. Water Manag. 2010, 97, 1102–1116. [Google Scholar] [CrossRef]
- Solh, M.; van Ginkel, M. Drought preparedness and drought mitigation in the developing world’ s drylands. Weather. Clim. Extrem. 2014, 3, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Yan, N.; Wu, B.; Perry, C. Assessing potential water savings in agriculture on the Hai Basin plain, China. Agric. Water Manag. 2015, 154, 11–19. [Google Scholar] [CrossRef]
- Zhang, T.; Lin, X.; Rogers, D.H.; Lamm, F.R. Adaption of irrigation infrastructure on irrigation demands under future drought in the United States. Earth Interact. 2015, 19, 1–16. [Google Scholar] [CrossRef]
- Osteen, C.; Gottlieb, J.; Vasavada, U. Agricultural resources and environmental indicators. In Economic Information Bulletin; U.S. Department of Agriculture, Economic Research Service: Washington, DC, USA, 2012; Volume 98, p. 55. [Google Scholar]
- Burrell, A.L.; Evans, J.P.; Liu, Y.Y. Detecting dryland degradation using Time Series Segmentation and Residual Trend analysis (TSS-RESTREND). Remote Sens. Environ. 2017, 197, 43–57. [Google Scholar] [CrossRef]
- Abdulrazzaq, Z.T.; Hadi, R.; Aziz, N.A. Integrated TRMM Data and Standardized Precipitation Index to Monitor the Meteorological Drought. Civ. Eng. J. 2019, 5, 1590–1598. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. 2011, 116, D12115. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.; Salazar, L.; Roytman, L. Forecasting crop production using satellite-based vegetation health indices in Kansas, USA. Int. J. Remote Sens. 2012, 33, 2798–2814. [Google Scholar] [CrossRef]
- Yan, N.; Wu, B.; Boken, V.K.; Chang, S.; Yang, L. A drought monitoring operational system for China using satellite data: Design and evaluation. Geomat. Nat. Hazards Risk 2016, 7, 264–277. [Google Scholar] [CrossRef]
- Wu, B.; Ma, Z.; Yan, N. Agricultural drought mitigating indices derived from the changes in drought characteristics. Remote Sens. Environ. 2020, 244, 111813. [Google Scholar] [CrossRef]
- Lu, H.; Mo, X.; Hu, S. Spatialtemporal variation characteristics of meterological droughts in North China Plain during 1960-2009. J. Nat. Disasters 2012, 21, 72–82. [Google Scholar] [CrossRef]
- Chen, F.; Liu, J.; Li, M. Researches on spatial and temporal succession law of agricultural drought in the past 60 years in China. J. Southwest China Norm. Univ. 2011, 36, 111–114. [Google Scholar]
- Wang, J.; Yang, Y.; Huang, J.; Chen, K.Z. Information provision, policy support, and farmers’ adaptive responses against drought: An empirical study in the North China Plain. Ecol. Model. 2015, 318, 275–282. [Google Scholar] [CrossRef]
- Zhu, X.C.; Wang, B.L.; Zhao, G.; Wang, S.H.; Liu, J.H. The strategic study of water saving and high efficiency water use in the Hai Basin. In Research Report; GEF Integrated Management of Water Resources and Water Environment: Beijing, China, 2008; pp. 42–44. [Google Scholar]
- Palmer, W.C. Meteorological Drought, Research Paper; US Department of Commerce Weather Bureau: Washington, DC, USA, 1965; p. 45.
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F. World droughts in the new millennium from AVHRR-based vegetation health indices. Eos Trans. Am. Geophys. Union 2002, 83, 557–563. [Google Scholar] [CrossRef]
- Chang, S.; Wu, B.; Yan, N.; Davdai, B.; Nasanbat, E. Suitability Assessment of Satellite-Derived Drought Indices for Mongolian Grassland. Remote Sens. 2017, 9, 650. [Google Scholar] [CrossRef] [Green Version]
- Wu, B. China’s Land Cover; Science Press: Beijing, China, 2017. [Google Scholar]
- Zhang, L.; Li, X.; Yuan, Q.; Liu, Y. An object-based approach to national land cover mapping using HJ satellite imagery. J. Appl. Remote Sens. 2014, 8, 1–19. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1975. [Google Scholar]
- Yu, H.; Zhang, Q.; Sun, P.; Song, C. Impacts of drought intensity and drought duration on winter wheat yield in five provinces of North China Plain. Acta Geogr. Sin. 2019, 74, 87–102. [Google Scholar]
- Zhang, Q.; Yu, H.; Sun, P.; Singh, V.P.; Shi, P. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Change 2019, 172, 298–306. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Huang, Q.; Rozelle, S. Privatization of tubewells in north china: Determinants and impacts on irrigated area, productivity and the water table. Hydrogeol. J. 2006, 14, 275–285. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Huang, J. The adaptive irrigation behavior of farmers and impacts on yield during extreme drought events in the North China Plain. Resour. Sci. 2016, 38, 900–908. [Google Scholar] [CrossRef]
- Trenberth, K.; Dai, A.; Schrier, G.; Jones, P.; Barichivich, J.; Briffa, K.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2013, 4, 17–22. [Google Scholar] [CrossRef]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Mo, X.; Hu, S.; Lin, Z.; Liu, S.; Xia, J. Impacts of climate change on agricultural water resources and adaptation on the North China Plain. Adv. Clim. Change Res. 2017, 8, 93–98. [Google Scholar] [CrossRef]
- Chen, H.; Wang, J.; Huang, J. Policy support, social capital, and farmers’ adaptation to drought in China. Glob. Environ. Change 2014, 24, 193–202. [Google Scholar] [CrossRef]
- Klein, R.N.; Lyon, D.J.; Kruge, G.R. Seeding Rates for Winter Wheat in Nebraska. G2056, Nebraska Extension Publications, USA. 2011. Available online: https://extensionpublications.unl.edu/assets/html/g2056/build/g2056.htm (accessed on 25 May 2021).
Province | PDSI | VHI | ADAC | ||||||
---|---|---|---|---|---|---|---|---|---|
Hebei | Henan | Shandong | Hebei | Henan | Shandong | Hebei | Henan | Shandong | |
1980s (1981–1990) | 55.2% | 45.4% | 63.5% | 40.0% | 30.4% | 35.7% | −26.1% | −27.5% | −40.3% |
1990s (1991–2000) | 44.1% | 34.6% | 52.6% | 29.4% | 19.7% | 25.3% | −73.4% | −70.0% | −82.0% |
2000s (2001–2010) | 51.4% | 45.4% | 61.9% | 33.4% | 28.8% | 31.3% | −59.2% | −86.0% | −66.7% |
2010s (2011–2018) | 53.5% | 52.5% | 65.0% | 32.2% | 28.1% | 27.3% | −46.9% | −81.8% | −61.1% |
1981–2018 | 51.0% | 44.5% | 60.8% | 33.8% | 26.7% | 29.9% | −52.5% | −68.8% | −63.2% |
DEM | Province | ADAC | ||
---|---|---|---|---|
Hebei | Henan | Shandong | ||
<200 | 1980s (1981–1990) | −25.5% | −27.0% | −46.8% |
1990s (1991–2000) | −74.9% | −74.1% | −82.0% | |
2000s (2001–2010) | −59.2% | −87.4% | −67.0% | |
2010s (2011–2018) | −49.7% | −84.1% | −62.2% | |
1981–2018 | −53.4% | −69.6% | −65.9% | |
200–500 | 1980s (1981–1990) | −35.0% | −43.4% | −50.7% |
1990s (1991–2000) | −63.0% | −59.5% | −71.9% | |
2000s (2001–2010) | −58.5% | −73.3% | −62.6% | |
2010s (2011–2018) | −27.9% | −45.9% | −49.9% | |
1981–2018 | −47.7% | −57.7% | −59.4% | |
>500 | 1980s (1981–1990) | −46.1% | −43.1% | - |
1990s (1991–2000) | −45.4% | −67.6% | - | |
2000s (2001–2010) | −58.4% | −57.2% | - | |
2010s (2011–2018) | −44.5% | −37.3% | - | |
1981–2018 | −49.1% | −53.0% | - |
Period | ADAC | APEI | ||||
---|---|---|---|---|---|---|
Hebei | Henan | Shandong | Hebei | Henan | Shandong | |
1981–2018 | −0.83% | −1.86% * | −0.71% | 0.34% * | 0.68% * | 0.11% * |
1981–2000 (P1) | −4.34% * | −3.95% * | −4.34% * | 0.46% * | 0.90% * | 0.10% * |
2001–2018 (P2) | 0.65% | 0.08% | −0.18% | 0.26% * | 0.33% * | 0.15% * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, N.; Wu, B.; Zhu, W.; Ma, Z.; Zhang, X.; Bulgan, D. The Evolution of Irrigation Effects on Agricultural Drought Mitigation in North China. Remote Sens. 2022, 14, 5197. https://doi.org/10.3390/rs14205197
Yan N, Wu B, Zhu W, Ma Z, Zhang X, Bulgan D. The Evolution of Irrigation Effects on Agricultural Drought Mitigation in North China. Remote Sensing. 2022; 14(20):5197. https://doi.org/10.3390/rs14205197
Chicago/Turabian StyleYan, Nana, Bingfang Wu, Weiwei Zhu, Zonghan Ma, Xiwang Zhang, and Davdai Bulgan. 2022. "The Evolution of Irrigation Effects on Agricultural Drought Mitigation in North China" Remote Sensing 14, no. 20: 5197. https://doi.org/10.3390/rs14205197
APA StyleYan, N., Wu, B., Zhu, W., Ma, Z., Zhang, X., & Bulgan, D. (2022). The Evolution of Irrigation Effects on Agricultural Drought Mitigation in North China. Remote Sensing, 14(20), 5197. https://doi.org/10.3390/rs14205197