Discrimination of Rock Units in Karst Terrains Using Sentinel-2A Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Imagery Processing
2.4. Discriminant Function Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, R.P. Remote Sensing Geology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–428. [Google Scholar] [CrossRef]
- Bishop, C.; Rivard, B.; de Souza Filho, C.; van der Meer, F. Geological Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 267–274. [Google Scholar] [CrossRef]
- Oluić, M. Tektonska analiza graničnog područja Hrvatske i Slovenije izrađena na snimcima napravljenim iz satelita ERTS-1. Geol. Vje. 1975, 28, 87–96. [Google Scholar]
- Oluić, M. Neke karakteristike tektonike u graničnom području Crne Gore, Dalmacije i Hercegovine na osnovi Landsat snimaka. Geol. Vje. 1979, 24–25, 43–49. [Google Scholar]
- Oluić, M. Snimanje i Istraživanje Zemlje iz Svemira; Hrvatska akademija znanosti i umjetnosti: Zagreb, Republika Hrvatska, 2001; pp. 10–516. [Google Scholar]
- Tangestani, M.H.; Shayeganpour, S. Mapping a Lithologically Complex Terrain Using Sentinel-2A Data: A Case Study of Suriyan Area, Southwestern Iran. Taylor Fr. 2020, 41, 3558–3574. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Tangestani, M.H. Potential of Sentinel-2 MSI Data in Targeting Rare Earth Element (Nd3+) Bearing Minerals in Esfordi Phosphate Deposit, Iran. Egypt. J. Remote Sens. Space Sci. 2022, 25, 697–710. [Google Scholar] [CrossRef]
- Ibrahim, E.; Barnabé, P.; Ramanaidou, E.; Pirard, E. Mapping Mineral Chemistry of a Lateritic Outcrop in New Caledonia through Generalized Regression Using Sentinel-2 and Field Reflectance Spectra. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 653–665. [Google Scholar] [CrossRef]
- Purwadi, I.; van der Werff, H.M.; Lievens, C. Targeting rare earth element bearing mine tailings on Bangka Island, Indonesia, with Sentinel-2 MSI. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102055. [Google Scholar] [CrossRef]
- Shebl, A.; Abdellatif, M.; Hissen, M.; Abdelaziz, I.A.; Csámer, Á. Lithological mapping enhancement by integrating Sentinel 2 and gamma-ray data utilizing support vector machine: A case study from Egypt. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102619. [Google Scholar] [CrossRef]
- Qi, X.; Zhang, C.; Wang, K. Comparing remote sensing methods for monitoring karst rocky desertification at sub-pixel scales in a highly heterogeneous karst region. Sci. Rep. 2019, 9, 13368. [Google Scholar] [CrossRef] [Green Version]
- Horvat, B.; Rubinić, J. Evaluating the Applicability of Thermal Infrared Remote Sensing in Estimating Water Potential of the Karst Aquifer: A Case Study in North Adriatic, Croatia. Remote Sens. 2021, 13, 3737. [Google Scholar] [CrossRef]
- Van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A. Potential of ESA’s Sentinel-2 for Geological Applications. Remote Sens. Environ. 2014, 148, 124–133. [Google Scholar] [CrossRef]
- Alpaydin, E. Introduction to Machine Learning, 4th ed.; The MIT Press: Cambridge, MA, USA; London, UK, 2020; p. 712. [Google Scholar]
- Cracknell, M.J. Machine Learning for Geological Mapping: Algorithms and Applications. Ph.D. Thesis, University of Tasmania, Hobart, Australia, 2014; pp. 1–275. [Google Scholar]
- Cracknell, M.J.; Reading, A.M. Geological Mapping Using Remote Sensing Data: A Comparison of Five Machine Learning Algorithms, Their Response to Variations in the Spatial Distribution of Training Data and the Use of Explicit Spatial Information. Comput. Geosci. 2014, 63, 22–33. [Google Scholar] [CrossRef] [Green Version]
- Cracknell, M.J.; Reading, A.M.; McNeill, A.W. Mapping Geology and Volcanic-Hosted Massive Sulfide Alteration in the Hellyer–Mt Charter Region, Tasmania, Using Random ForestsTM and Self-Organising Maps. Aust. J. Earth Sci. 2014, 61, 287–304. [Google Scholar] [CrossRef]
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Zupanič, J.; Babić, L. Sedimentary Evolution of an Inner Foreland Basin Margin: Palaeogene Promina Beds of the Type Area, Mt. Promina (Dinarides, Croatia). Geol. Croat. 2011, 64, 101–119. [Google Scholar] [CrossRef]
- Rock, N.M.S. Numerical Geology. A source guide, glossary and selective bibliography to geological uses of computers and statistics. In Lecture Notes in Earth Sciences; Bhattacharji, S., Friedman, G.M., Neugebauer, H.J., Seilacher, A., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 18, pp. 1–379. [Google Scholar]
- Rodriguez-Galiano, V.; Sanchez-Castillo, M.; Chica-Olmo, M.; Chica-Rivas, M. Machine Learning Predictive Models for Mineral Prospectivity: An Evaluation of Neural Networks, Random Forest, Regression Trees and Support Vector Machines. Ore Geol. Rev. 2015, 71, 804–818. [Google Scholar] [CrossRef]
- Lary, D.J.; Alavi, A.H.; Gandomi, A.H.; Walker, A.L. Machine Learning in Geosciences and Remote Sensing. Geosci. Front. 2016, 7, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Othman, A.A.; Gloaguen, R. Integration of Spectral, Spatial and Morphometric Data into Lithological Mapping: A Comparison of Different Machine Learning Algorithms in the Kurdistan Region, NE Iraq. J. Asian Earth Sci. 2017, 146, 90–102. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.; Liou, Y.A.; Rahman, A. Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations-A Review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Shirmard, H.; Farahbakhsh, E.; Heidari, E.; Pour, A.B.; Pradhan, B.; Müller, D.; Chandra, R. A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data. Remote Sens. 2022, 14, 819. [Google Scholar] [CrossRef]
- Mamužić, P.; Korolija, B.; Majcen, Ž.; Borović, I.; Magaš, N.; Bojanić, L.; Božićević, S.; Babić, L.; Šimunić, A. Osnovna Geološka Karta SFRJ 1:100000, List Šibenik K 33-8. Inst. Geol. Istrž. Zagreb (1962-1965); Savezni geološki zavod: Beograd, Serbia, SFRJ, 1971. [Google Scholar]
- Mamužić, P.; Vrsalović, I.; Muldini-Mamužić, S.; Korolija, B.; Majcen, Ž.; Borović, I. Osnovna Geološka Karta SFRJ 1:100000: Tumač za List Šibenik K 33-8. Inst. Geol. Istrž. Zagreb (1966); Savezni geološki zavod: Beograd, Serbia, SFRJ, 1975. [Google Scholar]
- Marković, S. Hrvatske Mineralne Sirovine; Institut za geološka istraživanja: Zagreb, Croatia, 2002; pp. 1–544. [Google Scholar]
- Korbar, T. Orogenic Evolution of the External Dinarides in the NE Adriatic Region: A Model Constrained by Tectonostratigraphy of Upper Cretaceous to Paleogene Carbonates. Earth-Sci. Rev. 2009, 96, 296–312. [Google Scholar] [CrossRef]
- Kokaly, R.F.; Clark, R.N.; Swayze, G.A.; Livo, K.E.; Hoefen, T.M.; Pearson, N.C.; Wise, R.A.; Benzel, W.M.; Lowers, H.A.; Driscoll, R.L.; et al. USGS Spectral Library Version 7. U.S. Geol. Surv. Data Ser. 2017, 1035, 61. [Google Scholar] [CrossRef] [Green Version]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: New York, NY, USA, 1992; pp. 1–965. [Google Scholar]
- Hartigan, J.A. Clustering Algorithms; John Wiley & Sons: New York, NY, USA, 1975; pp. 1–347. [Google Scholar]
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C-Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Liberti, L.; Lavor, C. Euclidean Distance Geometry; Springe: Cham, Switzerland, 2017; 133p. [Google Scholar] [CrossRef]
- Maor, E. The Pythagorean Theorem: A 4000-Year History; Princeton University Press: Princeton, NJ, USA, 2019; 296p. [Google Scholar] [CrossRef]
- Jain, A.K. Data Clustering: 50 Years beyond K-Means. Pattern Recognit. Lett. 2010, 31, 651–666. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis: An Introduction, 5th ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–494. [Google Scholar] [CrossRef]
- Celik, T. Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and κ-Means Clustering. IEEE Geosci. Remote Sens. Lett. 2009, 6, 772–776. [Google Scholar] [CrossRef]
- Vattani, A. K-Means Requires Exponentially Many Iterations Even in the Plane. In Proceedings of the twenty-fifth annual symposium on Computational geometry, Aarhus, Denmark, 8–10 June 2009; pp. 324–332. [Google Scholar] [CrossRef] [Green Version]
- Di Giuseppe, M.G.; Troiano, A.; Troise, C.; De Natale, G. K-Means Clustering as Tool for Multivariate Geophysical Data Analysis. An Application to Shallow Fault Zone Imaging. J. Appl. Geophys. 2014, 101, 108–115. [Google Scholar] [CrossRef]
- Gašparović, M.; Zrinjski, M.; Gudelj, M. Automatic Cost-Effective Method for Land Cover Classification (ALCC). Comput. Environ. Urban Syst. 2019, 76, 1–10. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cracknell, M.J.; Reading, A.M. The Upside of Uncertainty: Identification of Lithology Contact Zones from Airborne Geophysics and Satellite Data Using Random Forests and Support Vector Machines. Geophysics 2013, 78, WB113–WB126. [Google Scholar] [CrossRef]
- Kuhn, S.; Cracknell, M.J.; Reading, A.M. Lithological Mapping in the Central African Copper Belt Using Random Forests and Clustering: Strategies for Optimised Results. Ore Geol. Rev. 2019, 112, 103015. [Google Scholar] [CrossRef]
- Harris, J.R.; Grunsky, E.C. Predictive Lithological Mapping of Canada’s North Using Random Forest Classification Applied to Geophysical and Geochemical Data. Comput. Geosci. 2015, 80, 9–25. [Google Scholar] [CrossRef]
- Darijani, M.; Farquharson, C.G.; Perrouty, S. A Random Forest approach to predict geology from geophysics in the Pontiac subprovince, Canada. Can. J. Earth Sci. 2022, 59, 489–503. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Müller, R.D.; Chandra, R. A Review of Machine Learning in Processing Remote Sensing Data for Mineral Exploration. Remote Sens. Environ. 2022, 268, 112750. [Google Scholar] [CrossRef]
- Weier, J.; Herring, D. Measuring Vegetation (NDVI and EVI); NASA Earth Observatory: Washington, DC, USA, 2000. [Google Scholar]
- Davis, J.C. Statistics and Data Analysis in Geology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Dillon, W.; Goldstein, M. Multivariate Analysis: Methods and Applications; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar] [CrossRef]
- Peh, Z.; Kovačević Galović, E. Geochemistry of Istrian Lower Palaeogene Bauxites—Is It Relevant to the Extent of Subaerial Exposure during Cretaceous Times? Ore Geol. Rev. 2014, 63, 296–306. [Google Scholar] [CrossRef]
- Hasan, O.; Miko, S.; Ilijanić, N.; Brunović, D.; Dedić, Ž.; Šparica Miko, M.; Peh, Z. Discrimination of Topsoil Environments in a Karst Landscape: An Outcome of a Geochemical Mapping Campaign. Geochem. Trans. 2020, 21, 1. [Google Scholar] [CrossRef] [PubMed]
- Plummer, C.; Carlson, D.; Hammersley, L. Physical Geology, 14th ed.; McGraw-Hill Education: New York, NY, USA, 2012. [Google Scholar]
- Kovačevič, M.; Bajat, B.; Trivič, B.; Pavlovič, R. Geological Units Classification of Multispectral Images by Using Support Vector Machines. In Proceedings of the International Conference on Intelligent Networking and Collaborative Systems, Barcelona, Spain, 4–6 November 2009; pp. 267–272. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Mrinjek, E. Conglomerate fabric and paleocurrent measurement in the braided fluvial system of the Promina Beds in northern Dalmatia (Croatia). Geol. Croat. 1993, 46, 125–136. [Google Scholar] [CrossRef]
- Mrinjek, E. Sedimentology and depositional setting of alluvial Promina Beds in northern Dalmatia, Croatia. Geol. Croat. 1993, 46, 243–261. [Google Scholar] [CrossRef]
- Babić, L.; Zupanić, J.; Kurtanjek, D. Sharply-topped alluvial gravel sheets in the Palaeogene Promina Basin (Dinarides, Croatia). Geol. Croat. 1995, 48, 33–48. [Google Scholar] [CrossRef]
- Babić, L.; Zupanič, J. Major events and stages in the sedimentary evolution of the Paleogene Promina basin (Dinarides, Croatia). Nat. Croat. Period. Musei Hist. Nat. Croat. 2007, 16, 215–232. [Google Scholar]
No. | Label | Name | Area in km2 | Surface Percentage % | No. of Polygons | Polygon Shape | Polygon Diameter (m) |
---|---|---|---|---|---|---|---|
1 | j SLS | Lake and swamp sediments, fine-grained sands and clays | 14.26 | 15.25 | 793 | Circle | 20 |
2 | d CL | Colluvium, gravel and sand | 27.24 | 29.17 | 1516 | Circle | 20 |
26.63 | 28.51 | 1406 | |||||
3 | aE3 CO | Mainly carbonate conglomerates and limestones | 20.94 | 22.42 | 1.166 | Circle | 20 |
4 | bE3 PL | Platy limestones | 12.91 | 13.82 | 719 | Circle | 20 |
13.52 | 14.47 | 819 | |||||
5 | E2,3 LMC | Limestones, marls and conglomerates in alternation | 16.37 | 17.53 | 911 | Circle | 20 |
6 | E1,2 FL | Foraminiferal limestones | 1.24 | 1.33 | 69 | Circle | 20 |
7 | K2,3 SRL | Rudist limestones | 0.25 | 0.27 | 14 | Circle | 20 |
8 | a | Anomalies | 0.20 | 0.22 | 12 | Circle | 20 |
9 | Total area | 93.39 | |||||
10 | Total percentage | 100 | |||||
11 | Total polygons | 5200 |
No. of variables | 12 | |||||||
Wilks’ lambda | 0.0024 | |||||||
Approximate F-ratio | 45.979 | |||||||
Degrees of freedom | [60; 1048] | |||||||
p-level | p = 0.000 | |||||||
DF | Eigen value | Eigen (%) | Eigen cum. | Canon. R | Wilks’ λ | Chi2 | df | p-Level |
1 | 28.374 | 87.36 | 87.36 | 0.983 | 0.002 | 1389.2 | 60 | 0.000 |
2 | 1.854 | 5.71 | 93.07 | 0.806 | 0.070 | 611.8 | 44 | 0.000 |
3 | 1.101 | 3.39 | 96.46 | 0.724 | 0.200 | 370.6 | 30 | 0.000 |
4 | 0.885 | 2.72 | 99.18 | 0.685 | 0.419 | 199.8 | 18 | 0.000 |
5 | 0.265 | 0.82 | 100.00 | 0.458 | 0.791 | 54.0 | 8 | 0.000 |
Group | Band | N | Mean | St. Dev. | Min | Max | Q1 | Median | Q3 |
---|---|---|---|---|---|---|---|---|---|
CO | 40 | 0.049 | 0.005 | 0.041 | 0.064 | 0.045 | 0.048 | 0.052 | |
CL | 40 | 0.050 | 0.005 | 0.039 | 0.066 | 0.046 | 0.050 | 0.053 | |
FL | 40 | 0.098 | 0.006 | 0.085 | 0.107 | 0.094 | 0.099 | 0.105 | |
PL | B1 | 40 | 0.053 | 0.005 | 0.045 | 0.061 | 0.050 | 0.053 | 0.057 |
SLS | 40 | 0.042 | 0.002 | 0.039 | 0.048 | 0.040 | 0.041 | 0.043 | |
SRL | 40 | 0.107 | 0.009 | 0.086 | 0.122 | 0.102 | 0.108 | 0.113 | |
All Groups | 240 | 0.066 | 0.027 | 0.039 | 0.122 | 0.046 | 0.053 | 0.097 | |
CO | 40 | 0.063 | 0.010 | 0.044 | 0.094 | 0.056 | 0.064 | 0.069 | |
CL | 40 | 0.067 | 0.015 | 0.045 | 0.108 | 0.057 | 0.063 | 0.072 | |
FL | 40 | 0.122 | 0.010 | 0.100 | 0.147 | 0.116 | 0.123 | 0.129 | |
PL | B2 | 40 | 0.067 | 0.011 | 0.047 | 0.092 | 0.058 | 0.066 | 0.075 |
SLS | 40 | 0.047 | 0.006 | 0.034 | 0.061 | 0.043 | 0.046 | 0.049 | |
SRL | 40 | 0.126 | 0.015 | 0.098 | 0.155 | 0.113 | 0.125 | 0.138 | |
All Groups | 240 | 0.082 | 0.033 | 0.034 | 0.155 | 0.056 | 0.068 | 0.115 | |
CO | 40 | 0.084 | 0.012 | 0.060 | 0.115 | 0.076 | 0.082 | 0.090 | |
CL | 40 | 0.096 | 0.019 | 0.067 | 0.163 | 0.084 | 0.091 | 0.103 | |
FL | 40 | 0.142 | 0.011 | 0.117 | 0.172 | 0.136 | 0.142 | 0.147 | |
PL | B3 | 40 | 0.095 | 0.015 | 0.069 | 0.124 | 0.084 | 0.091 | 0.108 |
SLS | 40 | 0.068 | 0.006 | 0.058 | 0.082 | 0.063 | 0.066 | 0.070 | |
SRL | 40 | 0.149 | 0.015 | 0.118 | 0.179 | 0.137 | 0.148 | 0.158 | |
All Groups | 240 | 0.106 | 0.033 | 0.058 | 0.179 | 0.078 | 0.095 | 0.137 | |
CO | 40 | 0.098 | 0.016 | 0.072 | 0.134 | 0.084 | 0.100 | 0.109 | |
CL | 40 | 0.121 | 0.029 | 0.073 | 0.215 | 0.102 | 0.114 | 0.135 | |
FL | 40 | 0.159 | 0.012 | 0.129 | 0.201 | 0.153 | 0.158 | 0.166 | |
PL | B4 | 40 | 0.120 | 0.020 | 0.078 | 0.162 | 0.104 | 0.118 | 0.136 |
SLS | 40 | 0.077 | 0.009 | 0.058 | 0.103 | 0.072 | 0.075 | 0.079 | |
SRL | 40 | 0.178 | 0.019 | 0.135 | 0.222 | 0.163 | 0.178 | 0.191 | |
All Groups | 240 | 0.125 | 0.039 | 0.058 | 0.222 | 0.093 | 0.118 | 0.158 | |
CO | 40 | 0.128 | 0.013 | 0.108 | 0.157 | 0.115 | 0.127 | 0.139 | |
CL | 40 | 0.155 | 0.026 | 0.121 | 0.246 | 0.138 | 0.149 | 0.164 | |
FL | 40 | 0.186 | 0.013 | 0.149 | 0.208 | 0.181 | 0.187 | 0.194 | |
PL | B5 | 40 | 0.161 | 0.022 | 0.122 | 0.206 | 0.143 | 0.163 | 0.173 |
SLS | 40 | 0.122 | 0.008 | 0.108 | 0.142 | 0.116 | 0.121 | 0.127 | |
SRL | 40 | 0.212 | 0.019 | 0.164 | 0.251 | 0.196 | 0.208 | 0.223 | |
All Groups | 240 | 0.160 | 0.036 | 0.108 | 0.251 | 0.129 | 0.157 | 0.190 | |
CO | 40 | 0.178 | 0.016 | 0.152 | 0.227 | 0.168 | 0.173 | 0.188 | |
CL | 40 | 0.225 | 0.032 | 0.175 | 0.300 | 0.200 | 0.225 | 0.246 | |
FL | 40 | 0.223 | 0.015 | 0.187 | 0.254 | 0.216 | 0.224 | 0.234 | |
PL | B6 | 40 | 0.230 | 0.036 | 0.172 | 0.327 | 0.201 | 0.233 | 0.247 |
SLS | 40 | 0.206 | 0.026 | 0.166 | 0.276 | 0.185 | 0.204 | 0.219 | |
SRL | 40 | 0.245 | 0.017 | 0.196 | 0.281 | 0.232 | 0.246 | 0.257 | |
All Groups | 240 | 0.218 | 0.033 | 0.151 | 0.327 | 0.190 | 0.220 | 0.241 | |
CO | 40 | 0.198 | 0.017 | 0.173 | 0.252 | 0.186 | 0.192 | 0.208 | |
DE | 40 | 0.250 | 0.036 | 0.190 | 0.326 | 0.222 | 0.250 | 0.280 | |
FL | 40 | 0.246 | 0.016 | 0.206 | 0.278 | 0.239 | 0.247 | 0.256 | |
PL | B7 | 40 | 0.252 | 0.037 | 0.185 | 0.349 | 0.220 | 0.255 | 0.270 |
SLS | 40 | 0.234 | 0.029 | 0.190 | 0.317 | 0.211 | 0.231 | 0.251 | |
SRL | 40 | 0.268 | 0.017 | 0.219 | 0.301 | 0.255 | 0.268 | 0.279 | |
All Groups | 240 | 0.241 | 0.034 | 0.173 | 0.349 | 0.212 | 0.245 | 0.263 | |
CO | 40 | 0.229 | 0.023 | 0.195 | 0.321 | 0.214 | 0.225 | 0.240 | |
CL | 40 | 0.276 | 0.043 | 0.208 | 0.385 | 0.244 | 0.270 | 0.313 | |
FL | 40 | 0.290 | 0.018 | 0.240 | 0.334 | 0.282 | 0.292 | 0.299 | |
PL | B8 | 40 | 0.279 | 0.044 | 0.205 | 0.393 | 0.249 | 0.275 | 0.304 |
SLS | 40 | 0.262 | 0.034 | 0.210 | 0.363 | 0.239 | 0.254 | 0.287 | |
SRL | 40 | 0.305 | 0.017 | 0.258 | 0.347 | 0.294 | 0.304 | 0.317 | |
All Groups | 240 | 0.273 | 0.039 | 0.195 | 0.347 | 0.294 | 0.304 | 0.317 | |
CO | 40 | 0.230 | 0.018 | 0.204 | 0.276 | 0.219 | 0.223 | 0.243 | |
CL | 40 | 0.277 | 0.037 | 0.214 | 0.358 | 0.249 | 0.280 | 0.304 | |
FL | 40 | 0.298 | 0.018 | 0.252 | 0.332 | 0.290 | 0.301 | 0.308 | |
PL | B8A | 40 | 0.279 | 0.037 | 0.213 | 0.376 | 0.247 | 0.282 | 0.297 |
SLS | 40 | 0.267 | 0.029 | 0.219 | 0.351 | 0.243 | 0.266 | 0.284 | |
SRL | 40 | 0.311 | 0.017 | 0.266 | 0.351 | 0.298 | 0.311 | 0.320 | |
All Groups | 240 | 0.277 | 0.037 | 0.204 | 0.376 | 0.244 | 0.282 | 0.305 | |
CO | 40 | 0.224 | 0.013 | 0.205 | 0.267 | 0.216 | 0.222 | 0.233 | |
CL | 40 | 0.279 | 0.031 | 0.229 | 0.341 | 0.257 | 0.283 | 0.295 | |
FL | 40 | 0.286 | 0.012 | 0.254 | 0.305 | 0.283 | 0.288 | 0.294 | |
PL | B9 | 40 | 0.280 | 0.034 | 0.223 | 0.369 | 0.250 | 0.278 | 0.303 |
SLS | 40 | 0.269 | 0.021 | 0.236 | 0.315 | 0.252 | 0.271 | 0.282 | |
SRL | 40 | 0.303 | 0.013 | 0.268 | 0.322 | 0.296 | 0.302 | 0.313 | |
All Groups | 240 | 0.274 | 0.033 | 0.205 | 0.369 | 0.245 | 0.282 | 0.296 | |
CO | 40 | 0.278 | 0.026 | 0.239 | 0.339 | 0.254 | 0.274 | 0.303 | |
CL | 40 | 0.299 | 0.032 | 0.247 | 0.381 | 0.274 | 0.302 | 0.314 | |
FL | 40 | 0.431 | 0.028 | 0.362 | 0.499 | 0.414 | 0.432 | 0.450 | |
PL | B11 | 40 | 0.315 | 0.028 | 0.247 | 0.362 | 0.297 | 0.324 | 0.336 |
SLS | 40 | 0.258 | 0.013 | 0.235 | 0.291 | 0.252 | 0.257 | 0.267 | |
SRL | 40 | 0.421 | 0.020 | 0.382 | 0.459 | 0.406 | 0.421 | 0.436 | |
All Groups | 240 | 0.334 | 0.072 | 0.235 | 0.499 | 0.270 | 0.313 | 0.407 | |
CO | 40 | 0.191 | 0.020 | 0.160 | 0.235 | 0.175 | 0.189 | 0.207 | |
CL | 40 | 0.205 | 0.034 | 0.152 | 0.312 | 0.184 | 0.203 | 0.212 | |
FL | B12 | 40 | 0.312 | 0.022 | 0.253 | 0.366 | 0.297 | 0.311 | 0.325 |
PL | 40 | 0.213 | 0.023 | 0.168 | 0.253 | 0.199 | 0.211 | 0.231 | |
SLS | 40 | 0.158 | 0.013 | 0.138 | 0.189 | 0.151 | 0.157 | 0.164 | |
SRL | 40 | 0.299 | 0.017 | 0.271 | 0.330 | 0.285 | 0.299 | 0.313 | |
All Groups | 240 | 0.230 | 0.061 | 0.138 | 0.366 | 0.178 | 0.211 | 0.293 |
Groups | CO | CL | FL | PL | SLS | SRL | % Correct |
---|---|---|---|---|---|---|---|
CO | 38 | 0 | 0 | 2 | 0 | 0 | 95.00 |
CL | 1 | 22 | 0 | 11 | 6 | 0 | 55.00 |
FL | 0 | 0 | 36 | 0 | 0 | 4 | 90.00 |
PL | 6 | 5 | 0 | 29 | 0 | 0 | 72.50 |
SLS | 3 | 0 | 0 | 0 | 37 | 0 | 92.50 |
SRL | 0 | 0 | 2 | 0 | 0 | 38 | 95.00 |
Total | 48 | 27 | 38 | 42 | 43 | 42 | 83.33 |
CO | CL | FL | PL | SLS | SRL | |
---|---|---|---|---|---|---|
CO | 0.00 | 12.07 | 116.27 | 12.57 | 12.49 | 129.37 |
CL | 12.07 | 0.00 | 130.90 | 3.33 | 9.57 | 136.98 |
FL | 116.27 | 130.90 | 0.00 | 122.04 | 142.82 | 19.25 |
PL | 12.57 | 3.33 | 122.04 | 0.00 | 11.08 | 128.68 |
SLS | 12.49 | 9.57 | 142.82 | 11.08 | 0.00 | 152.59 |
SRL | 129.36 | 136.98 | 19.25 | 128.68 | 152.60 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gizdavec, N.; Gašparović, M.; Miko, S.; Lužar-Oberiter, B.; Ilijanić, N.; Peh, Z. Discrimination of Rock Units in Karst Terrains Using Sentinel-2A Imagery. Remote Sens. 2022, 14, 5169. https://doi.org/10.3390/rs14205169
Gizdavec N, Gašparović M, Miko S, Lužar-Oberiter B, Ilijanić N, Peh Z. Discrimination of Rock Units in Karst Terrains Using Sentinel-2A Imagery. Remote Sensing. 2022; 14(20):5169. https://doi.org/10.3390/rs14205169
Chicago/Turabian StyleGizdavec, Nikola, Mateo Gašparović, Slobodan Miko, Borna Lužar-Oberiter, Nikolina Ilijanić, and Zoran Peh. 2022. "Discrimination of Rock Units in Karst Terrains Using Sentinel-2A Imagery" Remote Sensing 14, no. 20: 5169. https://doi.org/10.3390/rs14205169
APA StyleGizdavec, N., Gašparović, M., Miko, S., Lužar-Oberiter, B., Ilijanić, N., & Peh, Z. (2022). Discrimination of Rock Units in Karst Terrains Using Sentinel-2A Imagery. Remote Sensing, 14(20), 5169. https://doi.org/10.3390/rs14205169