Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Methods
2.3.1. Landscape Dynamic Rate
2.3.2. Landscape Conversion Matrix
2.3.3. Landscape Indices
2.3.4. Index of Human Disturbance
2.3.5. Statistical Analyses
3. Results
3.1. Analysis of Landscape Pattern Change
3.1.1. The Temporal and Spatial Changes in LULC
3.1.2. The Variation of Landscape Pattern
3.2. Analysis of Temporal and Spatial Variation of Human Disturbance
3.2.1. The Changes of Human Disturbance in the Temporal Dimension
3.2.2. The Changes of Human Disturbance in the Spatial Dimension
3.3. Regression Results of Landscape Index and Human Disturbance Index
4. Discussion
4.1. Driving Factors of the Spatial and Temporal Changes of the Wetland Landscape Pattern in the Riparian Area along the River into the Sea
4.2. Changes in Human Activities on the Wetland Landscape Pattern in the Riparian Area along the River into the Sea
4.3. Protections of the Wetland in the Riparian Zone of Coastal Regions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, J.L.; Theroux, S.M.; de Mesquita, C.P.B.; Hartman, W.H.; Tian, Y.; Tringe, S.G. Microbial drivers of methane emissions from unrestored industrial salt ponds. Isme J. 2021, 12, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Xu, X.B. China needs to incorporate ecosystem services into wetland conservation policies. Ecosyst. Serv. 2019, 37, 100941. [Google Scholar] [CrossRef]
- Zhou, J.B.; Wu, J.; Gong, Y.Z. Valuing wetland ecosystem services based on benefit transfer: A meta-analysis of China wetland studies. J. Clean. Prod. 2020, 276, 122988. [Google Scholar] [CrossRef]
- Trant, A.J.; Nijland, W.; Hoffman, K.M.; Mathews, D.L.; McLaren, D.; Nelson, T.A.; Starzomski, B.M. Intertidal resource use over millennia enhances forest productivity. Nat. Commun. 2016, 7, 12491. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Ma, M.G.; Thompson, J.R.; Flower, R.J. Protect coastal wetlands in China to save endangered migratory birds. Proc. Natl. Acad. Sci. USA 2017, 114, 5491–5492. [Google Scholar] [CrossRef] [Green Version]
- Hu, T.G.; Liu, J.H.; Zheng, G.; Zhang, D.R.; Huang, K.N. Evaluation of historical and future wetland degradation using remote sensing imagery and land use modeling. Land Degrad. Dev. 2020, 31, 65–80. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Bai, J.H.; Huang, L.B.; Gu, B.H.; Lu, Q.Q.; Gao, Z.Q. A review of methodologies and success indicators for coastal wetland restoration. Ecol. Indic. 2016, 60, 442–452. [Google Scholar] [CrossRef]
- Mori, A.S.; Cornelissen, J.H.C.; Fujii, S.; Okada, K.; Isbell, F. A meta-analysis on decomposition quantifies afterlife effects of plant diversity as a global change driver. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Xi, Y.; Peng, S.S.; Ciais, P.; Chen, Y.H. Future impacts of climate change on inland Ramsar wetlands. Nat. Clim. Chang. 2021, 11, 45–51. [Google Scholar] [CrossRef]
- Wu, W.T.; Zhi, C.; Gao, Y.W.; Chen, C.P.; Chen, Z.Q.; Su, H.; Lu, W.F.; Tian, B. Increasing fragmentation and squeezing of coastal wetlands: Status, drivers, and sustainable protection from the perspective of remote sensing. Sci. Total Environ. 2022, 811, 152339. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; He, G.Z.; Zhang, L.; Lu, Y.L. Delineating pollution threat intensity from onshore industries to coastal wetlands in the Bohai Rim, the Yangtze River Delta, and the Pearl River Delta, China. J. Clean. Prod. 2021, 320, 128880. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.F.; Zhai, T.L.; He, T.; Qi, Y.; Jin, Z.F.; Cai, Y.M. The role of human activity in decreasing ecologically sound land use in China. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Chen, R.S.; Wang, Y. Tendency of land reclamation in coastal areas of Shanghai from 1998 to 2015. Land Use Policy 2020, 91, 104370. [Google Scholar] [CrossRef]
- Lu, Q.Q.; Bai, J.H.; Zhang, G.L.; Wu, J.J. Effects of coastal reclamation history on heavy metals in different types of wetland soils in the Pearl River Delta: Levels, sources and ecological risks. J. Clean. Prod. 2020, 272, 122668. [Google Scholar] [CrossRef]
- Xue, L.H.; Hou, P.F.; Zhang, Z.Y.; Shen, M.X.; Liu, F.X.; Yang, L.Z. Application of systematic strategy for agricultural non-point source pollution control in Yangtze River basin, China. Agr. Ecosyst. Environ. 2020, 304, 107148. [Google Scholar] [CrossRef]
- Birch, W.S.; Drescher, M.; Pittman, J.; Rooney, R.C. Trends and predictors of wetland conversion in urbanizing environments. J. Environ. Manag. 2022, 310, 114723. [Google Scholar] [CrossRef]
- Guo, J.C.; Jiang, C.; Wang, Y.X.; Yang, J.; Huang, W.M.; Gong, Q.H.; Zhao, Y.; Yang, Z.Y.; Chen, W.L.; Ren, H. Exploring ecosystem responses to coastal exploitation and identifying their spatial determinants: Re-orienting ecosystem conservation strategies for landscape management. Ecol. Indic. 2022, 138, 108860. [Google Scholar] [CrossRef]
- Yang, H.F.; Zhong, X.N.; Deng, S.Q.; Xu, H. Assessment of the impact of LUCC on NPP and its influencing factors in the Yangtze River basin, China. Catena 2021, 206, 105542. [Google Scholar] [CrossRef]
- Zhang, X.R.; Song, W.; Lang, Y.Q.; Feng, X.M.; Yuan, Q.Z.; Wang, J.T. Land use changes in the coastal zone of China’s Hebei Province and the corresponding impacts on habitat quality. Land Use Policy 2020, 99, 104957. [Google Scholar] [CrossRef]
- Cui, L.L.; Li, G.S.; Chen, Y.H.; Li, L.J. Response of landscape evolution to human disturbances in the coastal wetlands in northern Jiangsu Province, China. Remote Sens. 2021, 13, 2030. [Google Scholar] [CrossRef]
- Mu, Y.L.; Li, X.W.; Liang, C.; Li, P.; Guo, Y.; Liang, F.Y.; Bai, J.H.; Cui, B.S.; Bilal, H. Rapid landscape assessment for conservation effectiveness of wetland national nature reserves across the Chinese mainland. Glob. Ecol. Conserv. 2021, 31, 12. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wang, G.Q.; Xue, B.L.; Zhang, M.X.; Tan, Z.X. Dynamic landscapes and the driving forces in the Yellow River Delta wetland region in the past four decades. Sci. Total Environ. 2021, 787, 10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Deng, Y.J.; Hou, M.Y.; Yao, S.B. Response of land use change to the Grain for Green program and its driving forces in the loess hilly-gully region. Land 2021, 10, 194. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, B.X.; Hu, Y.D.; Xu, Q.; Qu, M.; Xu, D.W. Spatio-temporal land-use changes and the response in landscape pattern to hemeroby in a resource-based city. ISPRS Int. Geo Inf. 2020, 9, 20. [Google Scholar] [CrossRef] [Green Version]
- Peng, J.W.; Liu, S.G.; Lu, W.Z.; Liu, M.C.; Feng, S.L.; Cong, P.F. Continuous change mapping to understand wetland quantity and quality evolution and driving forces: A case study in the Liao River Estuary from 1986 to 2018. Remote Sens. 2021, 13, 4900. [Google Scholar] [CrossRef]
- Li, A.N.; Deng, W.; Kong, B.; Lu, X.N.; Feng, W.L.; Lei, G.B.; Bai, J.H. A Study on Wetland landscape pattern and its change process in Huang-Huai-Hai (3H) Area, China. J. Environ. Inform. 2013, 21, 23–34. [Google Scholar] [CrossRef]
- Xu, B.J.; Zhong, R.Y.; Hochman, G.; Dong, K.Y. The environmental consequences of fossil fuels in China: National and regional perspectives. Sustain. Dev. 2019, 27, 826–837. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, S.; Zhang, X. Renewable energy, carbon emission and economic growth: A revised environmental Kuznets Curve perspective. J. Clean. Prod 2019, 235, 1338–1352. [Google Scholar] [CrossRef]
- Eastman, J.R.; He, J.N. A regression-based procedure for Markov transition probability estimation in land change modeling. Land 2020, 9, 407. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.W.; Bu, K.; Yang, J.C.; Wang, Q.; Chang, L.P. The relationships between land use change and demographic dynamics in western Jilin province. J. Geogr. Sci. 2015, 25, 617–636. [Google Scholar] [CrossRef]
- Yan, P.; Li, X.D.; Ling, F.; Dong, L.; Iop. Research on the optimization of energy structure in Jiangsu Province. In Proceedings of the 4th International Conference on Advances in Energy Resources and Environment Engineering (ICAESEE), Chengdu, China, 7–9 December 2018. [Google Scholar]
- Li, Y.F.; Zhu, X.D.; Sun, X.; Wang, F. Landscape effects of environmental impact on bay-area wetlands under rapid urban expansion and development policy: A case study of Lianyungang, China. Landsc. Urban Plan. 2010, 94, 218–227. [Google Scholar] [CrossRef]
- Mao, D.H.; Wang, Z.M.; Du, B.J.; Li, L.; Tian, Y.L.; Jia, M.M.; Zeng, Y.; Song, K.S.; Jiang, M.; Wang, Y.Q. National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS-J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Luo, C.Y.; Fu, X.L.; Zeng, X.Y.; Cao, H.J.; Wang, J.F.; Ni, H.W.; Qu, Y.; Liu, Y.N. Responses of remnant wetlands in the Sanjiang Plain to farming-landscape patterns. Ecol. Indic. 2022, 135, 9. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.L.; Wang, J.Z.; Yang, D.Y.; Zhang, Y.E.; Wang, Z.F.; Gao, M. The spatial granularity effect, changing landscape patterns, and suitable landscape metrics in the Three Gorges Reservoir Area, 1995–2015. Ecol. Indic. 2020, 114, 15. [Google Scholar] [CrossRef]
- Yi, L.; Yu, Z.Y.; Qian, J.; Kobuliev, M.; Chen, C.L.; Xing, X.W. Evaluation of the heterogeneity in the intensity of human interference on urbanized coastal ecosystems: Shenzhen (China) as a case study. Ecol. Indic. 2021, 122, 10. [Google Scholar] [CrossRef]
- Zhou, Y.K.; Ning, L.X.; Bai, X.L. Spatial and temporal changes of human disturbances and their effects on landscape patterns in the Jiangsu coastal zone, China. Ecol. Indic. 2018, 93, 111–122. [Google Scholar] [CrossRef]
- Stinchcombe, J.R.; Agrawal, A.F.; Hohenlohe, P.A.; Arnold, S.J.; Blows, M.W. Estimating nonlinear selection gradients using quadratic regression coefficients: Double or nothing? Evolution 2008, 62, 2435–2440. [Google Scholar] [CrossRef]
- Masson, M.; Saint-Eve, A.; Delarue, J.; Blumenthal, D. Identifying the ideal profile of French yogurts for different clusters of consumers. J. Dairy Sci. 2016, 99, 3421–3433. [Google Scholar] [CrossRef] [Green Version]
- Arnold, S.J. Performance surfaces and adaptive landscapes. Integr. Comp. Biol. 2003, 43, 367–375. [Google Scholar] [CrossRef]
- Steinschneider, S.; Yang, Y.C.E.; Brown, C. Panel regression techniques for identifying impacts of anthropogenic landscape change on hydrologic response. Water Resour. Res. 2013, 49, 7874–7886. [Google Scholar] [CrossRef]
- Strobl, E. Preserving local biodiversity through crop diversification. Am. J. Agr. Econ. 2022, 104, 1140–1174. [Google Scholar] [CrossRef]
- Wu, T.; Zha, P.P.; Yu, M.J.; Jiang, G.J.; Zhang, J.Z.; You, Q.L.; Xie, X.F. Landscape pattern evolution and its response to human disturbance in a newly metropolitan area: A case study in Jin-Yi Metropolitan Area. Land 2021, 10, 767. [Google Scholar] [CrossRef]
- Meng, W.Q.; He, M.X.; Hu, B.B.; Mo, X.Q.; Li, H.Y.; Liu, B.Q.; Wang, Z.L. Status of wetlands in China: A review of extent, degradation, issues and recommendations for improvement. Ocean Coast. Manag. 2017, 146, 50–59. [Google Scholar] [CrossRef]
- Zhang, X.X.; Yao, J.; Wang, J.; Sila-Nowicka, K. Changes of forestland in China’s coastal areas (1996–2015): Regional variations and driving forces. Land Use Policy 2020, 99, 105018. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [Green Version]
- Auch, R.F.; Xian, G.; Laingen, C.R.; Sayler, K.L.; Reker, R.R. Human drivers, biophysical changes, and climatic variation affecting contemporary cropping proportions in the northern prairie of the U.S. J. Land Use Sci. 2018, 13, 32–58. [Google Scholar] [CrossRef]
- Deng, Y.; Qi, W.; Fu, B.J.; Wang, K. Geographical transformations of urban sprawl: Exploring the spatial heterogeneity across cities in China 1992–2015. Cities 2020, 105, 102415. [Google Scholar] [CrossRef]
- Ma, L.; Long, H.L.; Tang, L.S.; Tu, S.S.; Zhang, Y.N.; Qu, Y. Analysis of the spatial variations of determinants of agricultural production efficiency in China. Comput. Electron. Agr. 2021, 180, 105890. [Google Scholar] [CrossRef]
- Sun, J.R.; Zhou, L.; Zong, H. Landscape pattern vulnerability of the eastern Hengduan Mountains, China and response to elevation and artificial disturbance. Land 2022, 11, 1110. [Google Scholar] [CrossRef]
- Sun, Z.G.; Sun, W.G.; Tong, C.; Zeng, C.S.; Yu, X.; Mou, X.J. China’s coastal wetlands: Conservation history, implementation efforts, existing issues and strategies for future improvement. Environ. Int. 2015, 79, 25–41. [Google Scholar] [CrossRef]
- Navarro, N.; Abad, M.; Bonnail, E.; Izquierdo, T. The arid coastal wetlands of northern Chile: Towards an integrated management of highly threatened systems. J. Mar. Sci. Eng. 2021, 9, 948. [Google Scholar] [CrossRef]
- Xing, J.; Han, M.; Tao, X.H. A wetland protection domain ontology construction for knowledge management and information sharing. Hum. Ecol. Risk Assess. 2009, 15, 298–315. [Google Scholar] [CrossRef]
Time | Precision (m) | Data Source | Cloudage (%) |
---|---|---|---|
15 July 2009 | 30 | Landsat5 TM | 0.38 |
26 May 2014 | 30 | Landsat8 OLI_TIRS | 0.07 |
24 April 2020 | 30 | Landsat8 OLI_TIRS | 0.1 |
Category | METRIC | Description | Range | Scale |
---|---|---|---|---|
Landscape fragmentation indices | Number of patches (NP) | Equals the number of patches in the landscape or of the corresponding patch type. | NP ≥ 1, without limit. | C & L |
Patch density (PD) | The number of patches per 100 hectares. | PD > 0 | C & L | |
Landscape shape index | Edge density (ED) | Length of patches edge on a per unit area. It gets bigger when the landscape becomes more fragmental. | ED ≥ 0, without limit | C & L |
Landscape convergence indices | Patch cohesion index (COHESION) | It measures the physical connectedness of the corresponding patch type. | 0 < COHESION ≤ 100 | C |
Interspersion and juxtaposition index (IJI) | It is based on patch adjacencies and isolates the interspersion or intermixing of patch types. | 0 < IJI ≤ 100 | C & L | |
Landscape diversity index | Shannon’s diversity index (SHDI) | Equals minus the sum, across all patch types, of the proportional abundance of each patch type multiplied by that proportion. | SHDI ≥ 0, without limit | L |
Degree of Hemeroby | LULC Type | Hemeroby Index (HI) |
---|---|---|
Undisturbed (almost undisturbed by humans) | Other unused land | 0.14 |
Beach | 0.17 | |
River | 0.23 | |
Partially disturbed (where human and nature impacts played equal roles such as crop or fishery ecosystems) | Pond | 0.30 |
Ditch | 0.50 | |
Garden | 0.55 | |
Woodland | 0.55 | |
Grassland | 0.58 | |
Paddy field | 0.65 | |
Other arable land | 0.65 | |
Dryland | 0.70 | |
Brine pan | 0.75 | |
Completely disturbed (manmade entities like paved roads, etc.) | Traffic land | 0.95 |
Construction land | 0.99 |
Variable | Definition | Units | |
---|---|---|---|
Independent variables | Human disturbance index | It describes the impact index of human activities. | - |
Quadratic term of human disturbance index | It is the quadratic term for the human disturbance index. | - | |
Control variables | Construction land scale | Area of construction land. | km2 |
Cultivated land scale | Area of farmland. | km2 | |
Total population | It is the sum of the population groups living in a certain area and a certain time range. | ten thousand people | |
Gross domestic product (GDP) | It is the final result of the production activities of all permanent resident units in a country (or region) over a certain period. | hundred million RMB | |
Distance to the city center | It is the distance from one place in the study area to the center of the city. | km | |
Distance to the port | It is the distance from one place in the study area to the port. | km | |
Distance to the coastline | It is the distance from one place in the study area to the coastline. | km | |
Distance to the industrial land | It is the distance from one place in the study area to the industrial land. | km |
Landscape Types | 2009–2014 | 2014–2020 | 2009–2020 |
---|---|---|---|
Non-wetland | 1.29% | −4.65% | −2.28% |
Ditch | −0.24% | 0.70% | 0.28% |
River | −0.13% | −0.30% | −0.24% |
Pond | −0.29% | −4.51% | −2.73% |
Paddy field | −0.18% | 9.43% | 5.35% |
Beach | −4.65% | −12.05% | −7.39% |
Brine pan | −4.08% | −12.22% | −7.42% |
2009 | 2014 | |||||||
---|---|---|---|---|---|---|---|---|
Non-Wetland | Ditch | River | Pond | Paddy Field | Beach | Brine Pan | Total Area | |
Non-wetland | 107,834.30 | 1.15 | 2.28 | 0.47 | 54.25 | 0.05 | 3.13 | 107,895.63 |
Ditch | 198.92 | 14,775.25 | 0.01 | 0.04 | 19.01 | 0.01 | 0.01 | 14,993.25 |
River | 93.07 | 0.01 | 11,943.05 | 0.00 | 0.92 | 0.05 | 0.01 | 12,037.11 |
Pond | 145.90 | 0.04 | 0.01 | 8322.27 | 4.27 | 0.00 | 0.00 | 8472.49 |
Paddy field | 1022.01 | 1.01 | 0.06 | 0.09 | 85,137.04 | 0.01 | 0.00 | 86,160.22 |
Beach | 4780.38 | 0.01 | 0.20 | 0.00 | 15.29 | 12,408.50 | 0.00 | 17,204.38 |
Brine pan | 2188.97 | 0.01 | 0.01 | 0.01 | 0.00 | 0.00 | 6730.29 | 8919.29 |
Total area | 116,263.55 | 14,777.48 | 11,945.62 | 8322.88 | 85,230.78 | 12,408.62 | 6733.44 | 255,682.37 |
2014 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Non-Wetland | Ditch | River | Pond | Paddy Field | Beach | Brine Pan | Total Area | |
Non-wetland | 54,754.57 | 3085.26 | 570.33 | 1062.02 | 56,649.14 | 78.86 | 63.37 | 116,263.55 |
Ditch | 2174.03 | 9842.61 | 48.60 | 665.80 | 2044.07 | 2.19 | 0.18 | 14,777.48 |
River | 848.34 | 217.68 | 10,282.36 | 91.93 | 420.46 | 72.83 | 12.02 | 11,945.62 |
Pond | 3367.54 | 545.74 | 22.93 | 3377.53 | 998.85 | 10.29 | 0.00 | 8322.88 |
Paddy field | 8589.95 | 1606.40 | 37.65 | 238.84 | 74,757.76 | 0.18 | 0.00 | 85,230.78 |
Beach | 2981.33 | 176.05 | 692.78 | 181.56 | 6603.62 | 1773.28 | 0.00 | 12,408.62 |
Brine pan | 5670.68 | 27.26 | 41.04 | 78.88 | 18.05 | 0.00 | 897.53 | 6733.44 |
Total area | 78,386.44 | 15,501.00 | 11,695.69 | 5696.56 | 141,491.95 | 1937.63 | 973.10 | 255,682.37 |
2009 | 2020 | |||||||
---|---|---|---|---|---|---|---|---|
Non-Wetland | Ditch | River | Pond | Paddy Field | Beach | Brine Pan | Total Area | |
Non-wetland | 52,256.46 | 2665.16 | 514.37 | 1024.46 | 51,348.64 | 58.42 | 28.12 | 107,895.63 |
Ditch | 2319.69 | 9869.25 | 49.03 | 669.52 | 2083.29 | 2.29 | 0.18 | 14,993.25 |
River | 909.65 | 231.67 | 10,292.38 | 91.75 | 426.77 | 72.87 | 12.02 | 12,037.11 |
Pond | 3457.88 | 550.58 | 23.37 | 3383.53 | 1046.84 | 10.29 | 0.00 | 8472.49 |
Paddy field | 9471.83 | 1619.32 | 38.23 | 250.43 | 74,780.23 | 0.18 | 0.00 | 86,160.22 |
Beach | 3135.16 | 345.44 | 730.21 | 184.01 | 11,033.39 | 1776.17 | 0.00 | 17,204.38 |
Brine pan | 6835.77 | 219.58 | 48.10 | 92.86 | 772.79 | 17.41 | 932.78 | 8919.29 |
Total area | 78,386.44 | 15,501.00 | 11,695.69 | 5696.56 | 141,491.95 | 1937.63 | 973.10 | 255,682.37 |
Year | NP | PD | ED | IJI | SHDI |
---|---|---|---|---|---|
2009 | 51,744 | 11.7028 | 17.7604 | 54.1306 | 1.4566 |
2014 | 51,346 | 11.6128 | 16.8157 | 52.2593 | 1.4201 |
2020 | 51,426 | 11.6309 | 24.3261 | 35.5374 | 1.1367 |
Variable | Observations | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Human disturbance index | 8196 | 0.613 | 0.176 | 0.000 | 0.988 |
Quadratic term of human disturbance index | 8196 | 0.406 | 0.519 | 0.000 | 0.976 |
Total population | 8196 | 7.389 | 4.044 | 0.632 | 20.810 |
Gross domestic product (GDP) | 8196 | 34.630 | 81.330 | 2.800 | 483.000 |
Cultivated land scale | 8196 | 0.555 | 0.263 | 0.000 | 1.000 |
Construction land scale | 8196 | 0.157 | 0.184 | 0.000 | 1.000 |
Distance to the city center | 8196 | 17.880 | 13.860 | 0.006 | 57.010 |
Distance to the port | 8196 | 9.046 | 5.193 | 0.087 | 26.950 |
Distance to the coastline | 8196 | 41.380 | 18.730 | 0.218 | 71.800 |
Distance to the industrial land | 8196 | 2.568 | 2.076 | 0.001 | 14.480 |
NP | 8196 | 22.660 | 12.490 | 0.000 | 73.000 |
PD | 8196 | 22.660 | 12.490 | 0.000 | 73.000 |
ED | 8196 | 30.200 | 21.860 | 0.000 | 135.000 |
IJI | 8196 | 41.790 | 24.510 | 0.000 | 100.000 |
SHDI | 8196 | 0.699 | 0.333 | 0.000 | 1.565 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
NP | PD | ED | IJI | SHDI | |
Human disturbance index | 55.921 *** | 55.976 *** | 40.769 ** | 184.866 *** | 3.732 *** |
(5.895) | (5.896) | (20.659) | (32.641) | (0.326) | |
Quadratic term of human disturbance index | −57.292 *** | −57.348 *** | −178.208 *** | −203.271 *** | −2.509 *** |
(5.949) | (5.950) | (20.962) | (30.427) | (0.300) | |
Total population | 0.039 | 0.039 | −4.058 *** | −0.291 | 0.051 *** |
(0.098) | (0.098) | (0.252) | (0.373) | (0.004) | |
Gross domestic product (GDP) | −0.001 * | −0.001 ** | 0.001 | 0.001 | −0.000 *** |
(0.001) | (0.001) | (0.002) | (0.003) | (0.000) | |
Cultivated land scale | 2.470 *** | 2.468 *** | 52.231 *** | 9.883 ** | −0.579 *** |
(0.929) | (0.929) | (2.729) | (4.831) | (0.051) | |
Construction land scale | 3.914 *** | 3.923 *** | 62.755 *** | 39.152 *** | −0.481 *** |
(1.103) | (1.103) | (3.516) | (6.237) | (0.067) | |
Distance to the city center | −0.008 | −0.008 | 1.778 *** | 0.044 | −0.023 *** |
(0.070) | (0.070) | (0.188) | (0.313) | (0.004) | |
Distance to the port | −0.000 | −0.000 | −0.181 *** | 0.424 *** | −0.002 ** |
(0.014) | (0.014) | (0.042) | (0.074) | (0.001) | |
Distance to the coastline | 11.173 * | 11.162 * | −23.724 | −22.536 | 0.304 |
(6.178) | (6.178) | (18.589) | (21.279) | (0.205) | |
Distance to the industrial land | 0.046 | 0.046 | 0.317 *** | 0.653 *** | −0.004 ** |
(0.036) | (0.036) | (0.117) | (0.178) | (0.002) | |
Constant | −452.620 * | −452.193 * | 1015.251 | 926.241 | −12.613 |
(255.715) | (255.713) | (769.038) | (879.881) | (8.470) | |
Year FE | yes | yes | yes | yes | yes |
Observations | 8196.000 | 8196.000 | 8196.000 | 8196.000 | 8196.000 |
R2 | 0.063 | 0.063 | 0.493 | 0.077 | 0.395 |
F | 23.716 *** | 23.722 *** | 253.152 *** | 14.363 *** | 162.254 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, S.; Pu, J.; Xu, C.; Wang, Y.; Luo, W.; Wen, B. Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Remote Sens. 2022, 14, 5160. https://doi.org/10.3390/rs14205160
Shen S, Pu J, Xu C, Wang Y, Luo W, Wen B. Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Remote Sensing. 2022; 14(20):5160. https://doi.org/10.3390/rs14205160
Chicago/Turabian StyleShen, Shiguang, Jie Pu, Cong Xu, Yuhua Wang, Wan Luo, and Bo Wen. 2022. "Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region" Remote Sensing 14, no. 20: 5160. https://doi.org/10.3390/rs14205160
APA StyleShen, S., Pu, J., Xu, C., Wang, Y., Luo, W., & Wen, B. (2022). Effects of Human Disturbance on Riparian Wetland Landscape Pattern in a Coastal Region. Remote Sensing, 14(20), 5160. https://doi.org/10.3390/rs14205160