Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acquisition of Vegetation Coverage Field Data
2.3. UAV Aerial Photography Data Processing and Data Analysis
2.4. MODIS Data and Processing
2.5. Environmental Factors and Pretreatment
2.6. Establish and Evaluate the Inversion Model of Vegetation Coverage
2.6.1. Screening of Vegetation Coverage Sensitivity Indicators
2.6.2. Establishment of the Vegetation Coverage Inversion Model
2.7. Model Evaluation Indicators
2.8. Spatial Distribution and Dynamic Changes in Vegetation Coverage
3. Results
3.1. Spatial Distribution of Vegetation Coverage in Sample Plots Obtained from UAV Aerial Photography in 2019–2021
3.2. Correlations of Vegetation Coverage before and after GS Image Fusion
3.3. Results of Screening of Vegetation Coverage Sensitivity Indicators
3.4. Evaluation of the Multivariate Parametric Regression Models
3.5. Accuracy Evaluation of the Multivariate Regression Models Based on the SVM and BPNN
3.6. Comparative Analysis of the Multivariate Parametric Regression Models and Machine Learning Regression Models
3.7. Analysis of the Spatial Distribution and Trend of Vegetation Coverage
4. Discussion
4.1. Comparison of the Applicability of the Five Vegetation Indices in Modeling the Vegetation Coverage
4.2. Advantages, Disadvantages, and Future Prospects of Image Fusion
4.3. Factors Affecting the Accuracy of the Optimal Vegetation Coverage Inversion Model
4.4. Trend of Vegetation Coverage and Possible Causes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. [Google Scholar] [CrossRef]
- Liu, Y.; Li, L.; Chen, X.; Zhang, R.; Yang, J. Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g. Glob. Planet. Change 2018, 169, 145–155. [Google Scholar] [CrossRef]
- Rodríguez-Maturino, A.; Martínez-Guerrero, J.H.; Chairez-Hernández, I.; Pereda-Solis, M.E.; Villarreal-Guerrero, F.; Renteria-Villalobos, M.; Pinedo-Alvarez, A. Mapping land cover and estimating the grassland structure in a priority area of the Chihuahuan desert. Land 2017, 6, 70. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Xu, J. Effects of climate change on vegetations on Qinghai-Tibet Plateau: A review. Chin. J. Ecol. 2009, 28, 747–754. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Stark, R.; Rundquist, D. Novel algorithms for remote estimation of vegetation fraction. Remote Sens. Environ. 2002, 80, 76–87. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Qingke, Z.; Xuexia, Z. Review of vegetation covering and its measuring and calculating method. J. Northwest Sci.-Tech. Univ. Agric. For. 2006, 34, 163–170. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Zhang, M.; Zhang, C. Impacts of climate change and human activities on vegetation cover in hilly southern China. Ecol. Eng. 2015, 81, 451–461. [Google Scholar] [CrossRef]
- Xin, Z.; Xu, J.; Zheng, W. Spatiotemporal variations of vegetation cover on the Chinese Loess Plateau (1981–2006): Impacts of climate changes and human activities. Sci. China Ser. D Earth Sci. 2008, 51, 67–78. [Google Scholar] [CrossRef]
- Fang, S.; Yan, J.; Che, M.; Zhu, Y.; Liu, Z.; Pei, H.; Zhang, H.; Xu, G.; Lin, X. Climate change and the ecological responses in Xinjiang, China: Model simulations and data analyses. Quat. Int. 2013, 311, 108–116. [Google Scholar] [CrossRef]
- Yang, H.; Mu, S.; Li, J. Effects of ecological restoration projects on land use and land cover change and its influences on territorial NPP in Xinjiang, China. Catena 2014, 115, 85–95. [Google Scholar] [CrossRef]
- Curran, P.; Williamson, H. Sample size for ground and remotely sensed data. Remote Sens. Environ. 1986, 20, 31–41. [Google Scholar] [CrossRef]
- Jia, K.; Liang, S.; Gu, X.; Baret, F.; Wei, X.; Wang, X.; Yao, Y.; Yang, L.; Li, Y. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data. Remote Sens. Environ. 2016, 177, 184–191. [Google Scholar] [CrossRef]
- Townshend, J.R.; Justice, C. Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 1986, 7, 1435–1445. [Google Scholar] [CrossRef]
- Barati, S.; Rayegani, B.; Saati, M.; Sharifi, A.; Nasri, M. Comparison the accuracies of different spectral indices for estimation of vegetation cover fraction in sparse vegetated areas. Egypt. J. Remote Sens. Space Sci. 2011, 14, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Weisberg, P.J.; Bristow, N.A. Landsat remote sensing approaches for monitoring long-term tree cover dynamics in semi-arid woodlands: Comparison of vegetation indices and spectral mixture analysis. Remote Sens. Environ. 2012, 119, 62–71. [Google Scholar] [CrossRef]
- Zeng, L.; Wardlow, B.D.; Hu, S.; Zhang, X.; Zhou, G.; Peng, G.; Xiang, D.; Wang, R.; Meng, R.; Wu, W. A novel strategy to reconstruct NDVI time-series with high temporal resolution from MODIS multi-temporal composite products. Remote Sens. 2021, 13, 1397. [Google Scholar] [CrossRef]
- Li, Z.; Li, X.; Wei, D.; Xu, X.; Wang, H. An assessment of correlation on MODIS-NDVI and EVI with natural vegetation coverage in Northern Hebei Province, China. Procedia Environ. Sci. 2010, 2, 964–969. [Google Scholar] [CrossRef] [Green Version]
- Evrendilek, F.; Gulbeyaz, O. Deriving vegetation dynamics of natural terrestrial ecosystems from MODIS NDVI/EVI data over Turkey. Sensors 2008, 8, 5270–5302. [Google Scholar] [CrossRef] [Green Version]
- Ishiyama, T.; Nakajima, Y.; Kajiwara, K.; Tsuchiya, K. Extraction of vegetation cover in an arid area based on satellite data. Adv. Space Res. 1997, 19, 1375–1378. [Google Scholar] [CrossRef]
- Fern, R.R.; Foxley, E.A.; Bruno, A.; Morrison, M.L. Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland. Ecol. Indic. 2018, 94, 16–21. [Google Scholar] [CrossRef]
- Purevdorj, T.; Tateishi, R.; Ishiyama, T.; Honda, Y. Relationships between percent vegetation cover and vegetation indices. Int. J. Remote Sens. 1998, 19, 3519–3535. [Google Scholar] [CrossRef]
- Yang, S.; Feng, Q.; Liang, T.; Liu, B.; Zhang, W.; Xie, H. Modeling grassland above-ground biomass based on artificial neural network and remote sensing in the Three-River Headwaters Region. Remote Sens. Environ. 2018, 204, 448–455. [Google Scholar] [CrossRef]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Meng, B.; Gao, J.; Liang, T.; Cui, X.; Ge, J.; Yin, J.; Feng, Q.; Xie, H. Modeling of alpine grassland cover based on unmanned aerial vehicle technology and multi-factor methods: A case study in the east of Tibetan Plateau, China. Remote Sens. 2018, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Chen, J.; Lou, P.; Yi, S.; Qin, Y.; You, H.; Han, X. Improving the estimation of alpine grassland fractional vegetation cover using optimized algorithms and multi-dimensional features. Plant Methods 2021, 17, 96. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.; DeFries, R.; Townshend, J.; Sohlberg, R.; Dimiceli, C.; Carroll, M. Towards an operational MODIS continuous field of percent tree cover algorithm: Examples using AVHRR and MODIS data. Remote Sens. Environ. 2002, 83, 303–319. [Google Scholar] [CrossRef]
- Huang, C.; Song, K.; Kim, S.; Townshend, J.R.; Davis, P.; Masek, J.G.; Goward, S.N. Use of a dark object concept and support vector machines to automate forest cover change analysis. Remote Sens. Environ. 2008, 112, 970–985. [Google Scholar] [CrossRef]
- Yuan, Q.; Shen, H.; Li, T.; Li, Z.; Li, S.; Jiang, Y.; Xu, H.; Tan, W.; Yang, Q.; Wang, J. Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 2020, 241, 111716. [Google Scholar] [CrossRef]
- Chen, J.; Yi, S.; Yu, Q.; Xiaoyun, W. Improving estimates of fractional vegetation cover based on UAV in alpine grassland on the Qinghai–Tibetan Plateau. Int. J. Remote Sens. 2016, 37, 1922–1936. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, Y.; Chang, L.; Qin, Y.; Chen, J.; Qin, Y.; Du, J.; Yi, S.; Wang, Y. Estimation of grassland canopy height and aboveground biomass at the quadrat scale using unmanned aerial vehicle. Remote Sens. 2018, 10, 851. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, D.; Meng, B.; Chen, J.; Wang, X.; Jiang, H.; Yu, Y.; Yi, S. Using UAVs to assess the relationship between alpine meadow bare patches and disturbance by pikas in the source region of Yellow River on the Qinghai-Tibetan Plateau. Glob. Ecol. Conserv. 2021, 26, e01517. [Google Scholar] [CrossRef]
- Zhang, X.; Yuan, Y.; Zhu, Z.; Ma, Q.; Yu, H.; Li, M.; Ma, J.; Yi, S.; He, X.; Sun, Y. Predicting the Distribution of Oxytropis ochrocephala Bunge in the Source Region of the Yellow River (China) Based on UAV Sampling Data and Species Distribution Model. Remote Sens. 2021, 13, 5129. [Google Scholar] [CrossRef]
- Kaivosoja, J.; Hautsalo, J.; Heikkinen, J.; Hiltunen, L.; Ruuttunen, P.; Näsi, R.; Niemeläinen, O.; Lemsalu, M.; Honkavaara, E.; Salonen, J. Reference measurements in developing UAV Systems for detecting pests, weeds, and diseases. Remote Sens. 2021, 13, 1238. [Google Scholar] [CrossRef]
- Abdollahnejad, A.; Panagiotidis, D.; Surový, P.; Modlinger, R. Investigating the Correlation between Multisource Remote Sensing Data for Predicting Potential Spread of Ips typographus L. Spots in Healthy Trees. Remote Sens. 2021, 13, 4953. [Google Scholar] [CrossRef]
- Xu, Q. Image Fusion and Stylization Processing Based on Multiscale Transformation and Convolutional Neural Network. Comput. Intell. Neurosci. 2022, 2022, 1181189. [Google Scholar] [CrossRef]
- Sales, M.H.R.; Souza, C.M.; Kyriakidis, P.C. Fusion of MODIS images using kriging with external drift. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2250–2259. [Google Scholar] [CrossRef]
- Monsalve-Tellez, J.M.; Torres-León, J.L.; Garcés-Gómez, Y.A. Evaluation of SAR and Optical Image Fusion Methods in Oil Palm Crop Cover Classification Using the Random Forest Algorithm. Agriculture 2022, 12, 955. [Google Scholar] [CrossRef]
- Sarp, G. Spectral and spatial quality analysis of pan-sharpening algorithms: A case study in Istanbul. Eur. J. Remote Sens. 2014, 47, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q. Sharpening the WBSI imagery of Tiangong-II: Gram-Schmidt and principal components transform in comparison. In Proceedings of the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, China, 28–30 July 2018; pp. 511–518. [Google Scholar]
- Yang, J.; Ren, G.; Ma, Y.; Fan, Y. Coastal wetland classification based on high resolution SAR and optical image fusion. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 886–889. [Google Scholar]
- Hashim, F.; Dibs, H.; Jaber, H.S. Adopting Gram-Schmidt and Brovey Methods for Estimating Land Use and Land Cover Using Remote Sensing and Satellite Images. Nat. Environ. Pollut. Technol. 2022, 21, 867–881. [Google Scholar] [CrossRef]
- Cheng, D.; Ling, W.; Lingyun, H.; Shaoming, W. Spatio-temporal distribution pattern of vegetation coverage in Junggar Basin, Xinjiang. Acta Ecol. Sin. 2016, 36, 72–76. [Google Scholar] [CrossRef]
- Xie, C.; Wu, S.; Zhuang, Q.; Zhang, Z.; Hou, G.; Luo, G.; Hu, Z. Where Anthropogenic Activity Occurs, Anthropogenic Activity Dominates Vegetation Net Primary Productivity Change. Remote Sens. 2022, 14, 1092. [Google Scholar] [CrossRef]
- Jun, R.; Ling, T. Multivariate characterization of vegetation in Junnger basin. Acta Agrestia Sin. 2005, 13, 134–139. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, X.; Wang, Q.; Zhang, D.; Duan, X.; Shi, X. Temperature Regulation Effect of Desert Vegetation in Minqin Desert Area. Anim. Husb. Feed Sci. 2016, 8, 364–368. [Google Scholar] [CrossRef]
- Zhang, R.; Guo, J.; Yin, G. Response of net primary productivity to grassland phenological changes in Xinjiang, China. PeerJ 2021, 9, e10650. [Google Scholar] [CrossRef]
- Yi, S. FragMAP: A tool for long-term and cooperative monitoring and analysis of small-scale habitat fragmentation using an unmanned aerial vehicle. Int. J. Remote Sens. 2016, 38, 2686–2697. [Google Scholar] [CrossRef]
- Tang, L.; He, M.; Li, X. Verification of fractional vegetation coverage and NDVI of desert vegetation via UAVRS technology. Remote Sens. 2020, 12, 1742. [Google Scholar] [CrossRef]
- Tucker, C.J.; Sellers, P. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Steven, M.D. The sensitivity of the OSAVI vegetation index to observational parameters. Remote Sens. Environ. 1998, 63, 49–60. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Luo, N.; Mao, D.; Wen, B.; Liu, X. Climate change affected vegetation dynamics in the northern Xinjiang of China: Evaluation by SPEI and NDVI. Land 2020, 9, 90. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Jia, K.; Liang, S.; Liu, J.; Wang, X. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sens. 2016, 8, 682. [Google Scholar] [CrossRef] [Green Version]
- Camps-Valls, G.; Bruzzone, L.; Rojo-Álvarez, J.L.; Melgani, F. Robust support vector regression for biophysical variable estimation from remotely sensed images. IEEE Geosci. Remote Sens. Lett. 2006, 3, 339–343. [Google Scholar] [CrossRef]
- Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sens. Environ. 2013, 137, 299–309. [Google Scholar] [CrossRef]
- Fensholt, R.; Rasmussen, K.; Nielsen, T.T.; Mbow, C. Evaluation of earth observation based long term vegetation trends—Intercomparing NDVI time series trend analysis consistency of Sahel from AVHRR GIMMS, Terra MODIS and SPOT VGT data. Remote Sens. Environ. 2009, 113, 1886–1898. [Google Scholar] [CrossRef]
- Zhao, H.; Liu, S.; Dong, S.; Su, X.; Wang, X.; Wu, X.; Wu, L.; Zhang, X. Analysis of vegetation change associated with human disturbance using MODIS data on the rangelands of the Qinghai-Tibet Plateau. Rangel. J. 2015, 37, 77–87. [Google Scholar] [CrossRef]
- Song, Y.; Ma, M.; Veroustraete, F. Comparison and conversion of AVHRR GIMMS and SPOT VEGETATION NDVI data in China. Int. J. Remote Sens. 2010, 31, 2377–2392. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, Y.; Kalhoro, G.M. Ecological Response of the Subsidy and Incentive System for Grassland Conservation in China. Land 2022, 11, 358. [Google Scholar] [CrossRef]
- Zhu, W.; Mao, F.; Xu, Y.; Zheng, J.; Song, L. Analysis on response of vegetation index to climate change and its prediction in the three-rivers-source region. Plateau Meteorol. 2019, 38, 693–704. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, D.; Chen, X.; Zhang, Y.; Maisupova, B.; Tao, Y. The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens. Environ. 2016, 175, 271–281. [Google Scholar] [CrossRef]
- Franklin, J.; Duncan, J.; Turner, D.L. Reflectance of vegetation and soil in Chihuahuan desert plant communities from ground radiometry using SPOT wavebands. Remote Sens. Environ. 1993, 46, 291–304. [Google Scholar] [CrossRef]
- McGwire, K.; Minor, T.; Fenstermaker, L. Hyperspectral mixture modeling for quantifying sparse vegetation cover in arid environments. Remote Sens. Environ. 2000, 72, 360–374. [Google Scholar] [CrossRef]
- Liu, B.; Shen, W.; Lin, N.; Li, R.; Yue, Y. Deriving vegetation fraction information for the alpine grassland on the Tibetan plateau using in situ spectral data. J. Appl. Remote Sens. 2014, 8, 083630. [Google Scholar] [CrossRef]
- Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation index time series for dryland vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Pan, Y.; Yang, X.; Fan, W. Spatial Scale Effect and Correction of Forest Aboveground Biomass Estimation Using Remote Sensing. Remote Sens. 2022, 14, 2828. [Google Scholar] [CrossRef]
- Quan, Y.; Tong, Y.; Feng, W.; Dauphin, G.; Huang, W.; Xing, M. A novel image fusion method of multi-spectral and sar images for land cover classification. Remote Sens. 2020, 12, 3801. [Google Scholar] [CrossRef]
- Dao, P.D.; Mong, N.T.; Chan, H.-P. Landsat-MODIS image fusion and object-based image analysis for observing flood inundation in a heterogeneous vegetated scene. GIScience Remote Sens. 2019, 56, 1148–1169. [Google Scholar] [CrossRef]
- Cao, L.; Liu, T.; Wei, L. A comparison of multi-resource remote sensing data for vegetation indices. In Proceedings of the IOP Conference Series: Earth and Environmental Science, Beijing, China, 22–26 April 2013; p. 012067. [Google Scholar]
- Soudani, K.; François, C.; Le Maire, G.; Le Dantec, V.; Dufrêne, E. Comparative analysis of IKONOS, SPOT, and ETM+ data for leaf area index estimation in temperate coniferous and deciduous forest stands. Remote Sens. Environ. 2006, 102, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Wang, Z.; Liu, L.; Li, C.; Peng, D.; Xiao, P. Improving Estimation of Woody Aboveground Biomass of Sparse Mixed Forest over Dryland Ecosystem by Combining Landsat-8, GaoFen-2, and UAV Imagery. Remote Sens. 2021, 13, 4859. [Google Scholar] [CrossRef]
- Tian, H.; Wang, Y.; Chen, T.; Zhang, L.; Qin, Y. Early-Season Mapping of Winter Crops Using Sentinel-2 Optical Imagery. Remote Sens. 2021, 13, 3822. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Feng, L.; Du, Q.; Runge, T. Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States. Remote Sens. 2020, 12, 1232. [Google Scholar] [CrossRef] [Green Version]
- Morais, T.G.; Teixeira, R.F.; Figueiredo, M.; Domingos, T. The use of machine learning methods to estimate aboveground biomass of grasslands: A review. Ecol. Indic. 2021, 130, 108081. [Google Scholar] [CrossRef]
- Xiao, J.; Eziz, A.; Zhang, H.; Wang, Z.; Tang, Z.; Fang, J. Responses of four dominant dryland plant species to climate change in the Junggar Basin, northwest China. Ecol. Evol. 2019, 9, 13596–13607. [Google Scholar] [CrossRef]
- Xue, J.; Wang, Y.; Teng, H.; Wang, N.; Li, D.; Peng, J.; Biswas, A.; Shi, Z. Dynamics of Vegetation Greenness and Its Response to Climate Change in Xinjiang over the Past Two Decades. Remote Sens. 2021, 13, 4063. [Google Scholar] [CrossRef]
- Yin, F.; Deng, X.; Jin, Q.; Yuan, Y.; Zhao, C. The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front. Earth Sci. 2014, 8, 93–103. [Google Scholar] [CrossRef]
- Zhang, R.; Liang, T.; Guo, J.; Xie, H.; Feng, Q.; Aimaiti, Y. Grassland dynamics in response to climate change and human activities in Xinjiang from 2000 to 2014. Sci. Rep. 2018, 8, 2888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, J.; Gui, D.; Lei, J.; Sun, H.; Zeng, F.; Mao, D.; Jin, Q.; Liu, Y. Oasification: An unable evasive process in fighting against desertification for the sustainable development of arid and semiarid regions of China. Catena 2019, 179, 197–209. [Google Scholar] [CrossRef]
Type | Percentage of the Study Area | Average Altitude (m) | Number of Sample Plots | Main Vegetation Types | Average Vegetation Height (m) |
---|---|---|---|---|---|
Non-grassland (bare land or sparse vegetation) | 13.65% | 210 | 41 | Haloxylon ammodendron, etc. | 0.63 |
Lowland meadow | 1.24% | 335 | 4 | Achnatherum splendens, Phragmites australis, Seriphidium borotalense, etc. | 0.81 |
Temperate steppe desert | 8.30% | 913 | 12 | Calligonum mongolicum, Stipa glareosa, Anabasis salsa, etc. | 0.11 |
Temperate desert steppe | 1.58% | 1122 | 5 | Festuca ovina, Seriphidium kaschgaricum, Anabasis brevifolia, etc. | 0.16 |
Temperate steppe | 75.05% | 541 | 109 | Haloxylon ammodendron, Tamarix ramosissima, Kalidium foliatum, etc. | 2.06 |
Total | 99.82% | 171 |
Variable | Formula | References |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | Tucker and Sellers [49] | |
Enhanced Vegetation Index (EVI) | Huete et al. [50] | |
Soil-Adjusted Vegetation Index (SAVI) | Huete [51] | |
Optimized Soil-Adjusted Vegetation Index (OSAVI) | Steven [52] | |
Modified Soil-Adjusted Vegetation Index (MSAVI) | Qi et al. [53] |
Vegetation Index | Remote Sensing Data | Formula | r | F |
---|---|---|---|---|
NDVI | MOD09GA | y = 49.826x − 1.559 | 0.62 | 104.97 ** |
MOD09GA_GQ | y = 52.535x − 2.046 | 0.69 | 155.21 ** | |
EVI | MOD09GA | y = 68.290x − 1.709 | 0.65 | 124.82 ** |
MOD09GA_GQ | y = 90.716x − 3.743 | 0.72 | 186.51 ** | |
SAVI | MOD09GA | y = 67.653x − 1.361 | 0.61 | 100.76 ** |
MOD09GA_GQ | y = 85.472x − 3.143 | 0.71 | 166.80 ** | |
MSAVI | MOD09GA | y = 71.027x − 1.057 | 0.61 | 98.38 ** |
MOD09GA_GQ | y = 92.058x − 2.974 | 0.70 | 165.11 ** | |
OSAVI | MOD09GA | y = 67.442x − 1.525 | 0.62 | 105.22 ** |
MOD09GA_GQ | y = 77.922x − 2.656 | 0.70 | 164.778 ** |
Main Factor | Independent Variable | Formula | r | F |
---|---|---|---|---|
Geographic location and topography | Longitude (°) | y = −0.58x + 54.61 | −0.17 | 4.83 * |
Latitude (°) | y = 2.996x − 132.09 | 0.36 | 25.44 ** | |
Elevation (m) | y = 0.003x + 2.642 | 0.12 | 2.64 | |
Slope (°) | y = −0.531x + 4.457 | −0.05 | 0.5 | |
Aspect (°) | y = 0.001x + 3.928 | 0.01 | 0.03 | |
Meteorology | Average temperature of the current month (°C) | y = −0.356x + 13.899 | −0.21 | 8.179 * |
Average temperature of the current and previous months (°C) | y = −0.519x + 17.542 | −0.27 | 12.778 ** | |
Average temperature of the current and previous two months (°C) | y = −0.468x + 15.26 | −0.24 | 10.143 * | |
Average temperature of the current and previous three months (°C) | y = −0.464x + 13.925 | −0.24 | 10.619 * | |
Average temperature of the current and previous four months (°C) | y = −0.426x + 11.442 | −0.23 | 9.056 * | |
Average temperature of the current and previous five months (°C) | y = −0.335x + 8.344 | −0.18 | 5.622 * | |
Cumulative precipitation for the current month (mm) | y = 0.244x − 0.407 | 0.31 | 17.62 ** | |
Cumulative precipitation for the current and previous months (mm) | y = 0.169x − 2.624 | 0.33 | 21.304 ** | |
Cumulative precipitation for the current and previous two months (mm) | y = 0.134x − 3.487 | 0.29 | 14.965 ** | |
Cumulative precipitation for the current and previous three months (mm) | y = 0.086x − 1.745 | 0.24 | 10.256 * | |
Cumulative precipitation for the current and previous four months (mm) | y = 0.082 − 2.405 | 0.26 | 12.226 * | |
Cumulative precipitation for the current and previous five months (mm) | y = 0.074x − 2.594 | 0.26 | 12.239 * |
Model | Training Dataset (n = 120) | Test Dataset (n = 51) | ||||
---|---|---|---|---|---|---|
r | R2 | MSE (%) | r | R2 | MSE (%) | |
Linear | 0.79 | 0.62 | 14.64 | 0.80 | 0.64 | 9.11 |
Logarithmic | 0.66 | 0.43 | 19.269 | 0.68 | 0.47 | 17.45 |
Power | 0.78 | 0.61 | 13.99 | 0.71 | 0.51 | 11.15 |
Formula | R2 | |
---|---|---|
Linear | y = −97.230 − 0.050X + 2.013Y + 97.891EVI + 0.141P + 0.057T | 0.62 |
Logarithmic | y = −285.546 − 29.123ln(X) + 113.239ln(Y) + 6.581ln(EVI) − 0.792ln(P) + 1.990ln(T) | 0.43 |
Power | y = 0.341 × (X−8.141) × (Y11.629) × (EVI1.485) × (P−0.533) × (T−0.078) | 0.61 |
Model | Training Dataset (n = 120) | Test Dataset (n = 51) | ||||
---|---|---|---|---|---|---|
r | R2 | MSE (%) | r | R2 | MSE (%) | |
SVM regression model | 0.83 | 0.69 | 16.16 | 0.89 | 0.80 | 8.35 |
BPNN regression model | 0.81 | 0.65 | 16.05 | 0.88 | 0.77 | 7.52 |
Parameter | Value |
---|---|
SVM type | Epsilon-SVR |
Kernel function type | Radial basis function (RBF) |
Kernel coefficient gamma for RBF | 0.0078 |
Penalty factor C of the error term | 128 |
Epsilon | 0.1 |
Tolerance for stopping criterion | 1 × 10−4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, Y.; Zhang, R.; Guo, J.; Yi, S.; Meng, B.; Liu, J. Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data. Remote Sens. 2022, 14, 5146. https://doi.org/10.3390/rs14205146
Miao Y, Zhang R, Guo J, Yi S, Meng B, Liu J. Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data. Remote Sensing. 2022; 14(20):5146. https://doi.org/10.3390/rs14205146
Chicago/Turabian StyleMiao, Yuhao, Renping Zhang, Jing Guo, Shuhua Yi, Baoping Meng, and Jiaqing Liu. 2022. "Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data" Remote Sensing 14, no. 20: 5146. https://doi.org/10.3390/rs14205146
APA StyleMiao, Y., Zhang, R., Guo, J., Yi, S., Meng, B., & Liu, J. (2022). Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data. Remote Sensing, 14(20), 5146. https://doi.org/10.3390/rs14205146