Lava Volume from Remote Sensing Data: Comparisons with Reverse Petrological Approaches for Two Types of Effusive Eruption
Abstract
:1. Introduction
2. Instrument Description
2.1. Tropospheric SO2 Emissions Measured from Space
2.1.1. The Ozone Monitoring Instrument
2.1.2. The Ozone Mapping and Profiler Suite Instrument
2.1.3. The Tropospheric Monitoring Instrument
2.2. NOVAC Network
3. Materials and Methods
3.1. Field Measurements
3.2. MODIS Image Processing
- Radiance of Band 21 centered at 3.959 (Mid Infra-Red (MIR) channel: low gain);
- Radiance of Band 22 centered at 3.959 (MIR channel: high gain);
- Radiance of Band 31 centered at 11.03 (Thermal Infra-Red (TIR) channel);
- Radiance of Band 32 centered at 12.02 (TIR channel).
3.3. Estimation of Lava Discharge Rate from MODIS Data
3.4. Relationships between SO2 Emissions and Erupted Volumes
3.4.1. Petrologic Method
3.4.2. Reverse Petrologic Method including a Time Parameter
4. Results
4.1. Comparisons with NOVAC
4.2. MODIS Analysis
4.2.1. April 2007
4.2.2. May 2015
4.2.3. August–October 2015
4.2.4. February 2019
4.2.5. April 2020
4.2.6. Summary of Thermally-Derived TADR Data
4.3. Magmatic Sulfur Content Estimations
4.3.1. General Analysis
4.3.2. Temporal Variation of Sulfur Content
4.4. Daily Volume Estimation from Sulfur Content
4.4.1. Fixed Sulfur Content within Melt Inclusions
4.4.2. Variable Pre-Eruptive Sulfur Contents
5. Discussion
5.1. SO2 Flux Measurements from Space and from the Ground-Based NOVAC Network
5.2. Discharge of the Magmatic System
5.2.1. April 2007
5.2.2. May 2015
5.2.3. August–October 2015
5.2.4. February 2019
5.2.5. April 2020
6. Conclusions
- The addition of another NOVAC DOAS station on the east flank of Piton de la Fournaise will allow efficient surveys of future vents in this area. In addition, a more extended comparison between the satellite SO2 masses and the ground-based SO2 fluxes could allow cross-validation of both methods, depending on measurement conditions. A combination of both would lead to better results.
- This study demonstrates that the MODVOLC did not detect a few hot spots in addition to overestimating the TADR and hence the total lava volume. Consequently, MODVOLC data should be used with caution when used for TADR conversion. However, MIROVA appears well calibrated to produce reliable TADR for Piton de la Fournaise.
- In addition, depending on the type of activity (e.g., purely effusive, fountains, etc.), the residual sulfur content in the matrix can vary from 50 ppm up to 230 ppm. Hence, our use of a fixed value of 160 ppm for the development of time-series of pre-eruptive sulfur contents is a significant assumption. Future work may select the optimal value according to the style of activity.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Instrument | Nadir Spatial Resolution | Launch Year | Spectral Range | Overpass Time (Ascending Node) |
---|---|---|---|---|
OMI | 24 km2 | 2004 | 264–383 nm (UV) | ~13:45 |
OMPS | 50 km2 | 2011 | 300–380 nm (UV) | ~13:30 |
TROPOMI | 3.5 km2 | 2017 | 310–405 nm (UV) | ~13:30 |
Appendix B
References
- Peltier, A.; Bachèlery, P.; Staudacher, T. Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data. J. Volcanol. Geotherm. Res. 2009, 184, 93–108. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Förster, H.; de Vries, J.; Otter, G.; Levelt, P.F.; Claas, J.; Eskes, H.J.; De Haan, J.F.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Flynn, L.; Long, C.; Wu, X.; Evans, R.; Beck, C.T.; Petropavlovskikh, I.; McConville, G.; Yu, W.; Zhang, Z.; Niu, J.; et al. Performance of the Ozone Mapping and Profiler Suite (OMPS) products. J. Geophys. Res. Atmos. 2014, 119, 6181–6195. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.; Garbeil, H.; Harris, A.; Pilger, E. Automated volcanic eruption detection using MODIS. Remote Sens. Environ. 2002, 82, 135–155. [Google Scholar] [CrossRef] [Green Version]
- Hook, S.J.; Myers, J.J.; Thome, K.J.; Fitzgerald, M.; Kahle, A.B. The MODIS/ASTER airborne simulator (MASTER)—A new instrument for earth science studies. Remote Sens. Environ. 2001, 76, 93–102. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Cigolini, C.; Donne, D.D.; Ripepe, M. Enhanced volcanic hot-spot detection using MODIS IR data: Results from the MIROVA system. Geol. Soc. Lond. Spec. Publ. 2016, 426, 181–205. [Google Scholar] [CrossRef]
- Theys, N.; De Smedt, I.; Yu, H.; Danckaert, T.; van Gent, J.; Hörmann, C.; Van Roozendael, M.; Hedelt, P.; Bauer, H.; Romahn, F.; et al. Sulfur dioxide retrievals from TROPOMI onboard Sentinel-5 Precursor: Algorithm theoretical basis. Atmos. Meas. Tech. 2017, 10, 119–153. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Krotkov, N.A.; Carn, S.; Zhang, Y.; Spurr, R.J.D.; Joiner, J. New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO2 dataset: Algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS). Atmos. Meas. Tech. 2017, 10, 445–458. [Google Scholar] [CrossRef] [Green Version]
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Stein Zweers, D.C.; Duncan, B.N.; Streets, D.G.; Eskes, H.; McLinden, C.; et al. The ozone monitoring instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Wright, R. MODVOLC: 14 years of autonomous observations of effusive volcanism from space. Geol. Soc. Lond. Spec. Publ. 2016, 426, 23–53. [Google Scholar] [CrossRef] [Green Version]
- Chevallier, L.; Bachelery, P. Evolution structurale du volcan actif du Piton de la Fournaise, Ile de la Réunion—Océan indien occidental. Bull. Volcanol. 1981, 44, 723–741. [Google Scholar] [CrossRef]
- Coppola, D.; Di Muro, A.; Peltier, A.; Villeneuve, N.; Ferrazzini, V.; Favalli, M.; Bachèlery, P.; Gurioli, L.; Harris, A.J.L.; Moune, S.; et al. Shallow system rejuvenation and magma discharge trends at Piton de la Fournaise volcano (La Réunion Island). Earth Planet. Sci. Lett. 2017, 463, 13–24. [Google Scholar] [CrossRef]
- Di Muro, A.; Métrich, N.; Allard, P.; Aiuppa, A.; Burton, M.; Galle, B.; Staudacher, T. Magma Degassing at Piton de la Fournaise Volcano; Bachelery, P., Lenat, J.-F., di Muro, A., Michon, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 203–222. [Google Scholar] [CrossRef]
- Di Muro, A.; Aiuppa, A.; Burton, M.; Metrich, N.; Allard, P.; Fougeroux, T.; Guida, R.; Giudice, G. Intra-eruptive gas emissions and shallow magma storage after the 2007 summit caldera collapse of Piton de la Fournaise, Reunion island. In Proceedings of the EGU General Assembly 2012, Vienna, Austria, 22–27 April 2020; p. 2761. [Google Scholar]
- Peltier, A.; Staudacher, T.; Bachèlery, P. New behaviour of the Piton de La Fournaise volcano feeding system (La Réunion Island) deduced from GPS data: Influence of the 2007 Dolomieu caldera collapse. J. Volcanol. Geotherm. Res. 2010, 192, 48–56. [Google Scholar] [CrossRef]
- De Franchis, C.; Meinhardt-Llopis, E.; Michel, J.; Morel, J.-M.; Facciolo, G. An automatic and modular stereo pipeline for pushbroom images. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II–3, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Chevrel, M.O.; Favalli, M.; Villeneuve, N.; Harris, A.J.L.; Fornaciai, A.; Richter, N.; Peltier, A. Lava flow hazard map of Piton de la Fournaise volcano. Nat. Hazards Earth Syst. Sci. 2021, 21, 2355–2377. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Ripepe, M. Regional earthquake as a trigger for enhanced volcanic activity: Evidence from MODIS thermal data. Geophys. Res. Lett. 2007, 34, L02304. [Google Scholar] [CrossRef]
- Galle, B.; Johansson, M.; Rivera, C.; Zhang, Y.; Kihlman, M.; Kern, C.; Hidalgo, S. Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description. J. Geophys. Res. 2010, 115, D05304. [Google Scholar] [CrossRef]
- Michon, L.; Di Muro, A.; Villeneuve, N.; Saint-Marc, C.; Fadda, P.; Manta, F. Explosive activity of the summit cone of Piton de la Fournaise volcano (La Réunion island): A historical and geological review. J. Volcanol. Geotherm. Res. 2013, 264, 117–133. [Google Scholar] [CrossRef] [Green Version]
- Derrien, A. Apports des Techniques Photogrammétriques à L’étude du Dynamisme des Structures Volcaniques du Piton de la Fournaise. Ph.D. Thesis, Université de Paris, Paris, France, 2019. Available online: http://www.theses.fr/2019UNIP7084/document (accessed on 1 November 2021).
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An Atmospheric Correction Parameter Calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003, 2003 IEEE International Geoscience and Remote Sensing Symposium, Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; Volume 5, pp. 3014–3016. [Google Scholar] [CrossRef]
- Coppola, D.; Barsotti, S.; Cigolini, C.; Laiolo, M.; Pfeffer, M.; Ripepe, M. Monitoring the time-averaged discharge rates, volumes and emplacement style of large lava flows by using MIROVA system: The case of the 2014–2015 eruption at Holuhraun (Iceland). Ann. Geophys. 2019, 61, 10. [Google Scholar] [CrossRef] [Green Version]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar] [CrossRef]
- Harris, A. Detection capabilities of thermal sensors—Electronic Supplement 1. In Thermal Remote Sensing of Active Volcanoes A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; pp. 1–57. Available online: https://www.cambridge.org/files/3313/6698/1587/Harris_electronic_supplement_1.pdf (accessed on 1 November 2021).
- Harris, A.J.L.; Baloga, S.M. Lava discharge rates from satellite-measured heat flux. Geophys. Res. Lett. 2009, 36, L19302. [Google Scholar] [CrossRef]
- Coppola, D.; Piscopo, D.; Staudacher, T.; Cigolini, C. Lava discharge rate and effusive pattern at Piton de la Fournaise from MODIS data. J. Volcanol. Geotherm. Res. 2009, 184, 174–192. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Flynn, L.P.; Keszthelyi, L.; Mouginis-Mark, P.J.; Rowland, S.K.; Resing, J.A. Calculation of lava effusion rates from Landsat TM data. Bull. Volcanol. 1998, 60, 52–71. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Calvari, S. Lava effusion rate definition and measurement: A review. Bull. Volcanol. 2007, 70, 1–22. [Google Scholar] [CrossRef]
- Coppola, D.; Laiolo, M.; Piscopo, D.; Cigolini, C. Rheological control on the radiant density of active lava flows and domes. J. Volcanol. Geotherm. Res. 2013, 249, 39–48. [Google Scholar] [CrossRef]
- Pieri, D.C.; Baloga, S.M.; Nelson, R.M.; Sagan, C. Sulfur flows of Ra Patera, Io. Icarus 1984, 60, 685–700. [Google Scholar] [CrossRef]
- Self, S. Magma volume, volatile emissions, and stratospheric aerosols from the 1815 eruption of Tambora. Geophys. Res. Lett. 2004, 31, L20608. [Google Scholar] [CrossRef] [Green Version]
- Di Muro, A.; Staudacher, T.; Ferrazzini, V.; Métrich, N.; Besson, P.; Garofalo, C.; Villemant, B. Shallow Magma Storage at Piton de la Fournaise Volcano After 2007 Summit Caldera Collapse Tracked in Pele’s Hairs. In Hawaiian Volcanoes: From Source to Surface; Carey, R., Cayol, V., Poland, M., Weis, D., Eds.; Geophysical Monograph Series; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 189–212. [Google Scholar] [CrossRef]
- Duputel, Z.; Rivera, L. The 2007 caldera collapse of Piton de la Fournaise volcano: Source process from very-long-period seismic signals. Earth Planet Sci. Lett. 2019, 527, 115786. [Google Scholar] [CrossRef]
- Peltier, A.; Ferrazzini, V.; Di Muro, A.; Kowalski, P.; Villeneuve, N.; Richter, N.; Chevrel, O.; Froger, J.L.; Hrysiewicz, A.; Ramsey, M.; et al. Volcano Crisis Management at Piton de la Fournaise (La Réunion) during the COVID-19 Lockdown. Seismol. Res. Lett. 2020, 92, 38–52. [Google Scholar] [CrossRef]
- Di Muro, A.; Metrich, N.; Vergani, D.; Rosi, M.; Armienti, P.; Fougeroux, T.; Civetta, L.; Deloule, E.; Arienzo, I. The Shallow Plumbing System of Piton de la Fournaise Volcano (La Reunion Island, Indian Ocean) Revealed by the Major 2007 Caldera-Forming Eruption. J. Petrol. 2014, 55, 1287–1315. [Google Scholar] [CrossRef] [Green Version]
- Gouhier, M.; Coppola, D. Satellite-based evidence for a large hydrothermal system at Piton de la Fournaise volcano (Reunion Island): Hydrothermal system and SO2 emissions. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef]
- Gurioli, L.; Di Muro, A.; Vlastélic, I.; Moune, S.; Thivet, S.; Valer, M.; Hénot, J.-M.; Villeneuve, N.; Boudoire, G.; Peltier, A.; et al. Integrating field, textural, and geochemical monitoring to track eruption triggers and dynamics: A case study from Piton de la Fournaise. Solid Earth 2018, 9, 431–455. [Google Scholar] [CrossRef] [Green Version]
- Staudacher, T.; Ferrazzini, V.; Peltier, A.; Kowalski, P.; Boissier, P.; Catherine, P.; Massin, F.; Lauret, F. The April 2007 eruption and the Dolomieu crater collapse, two major events at Piton de la Fournaise (La Réunion Island, Indian Ocean). J. Volcanol. Geotherm. Res. 2009, 184, 126–137. [Google Scholar] [CrossRef]
- Walker, G.P.L. Three Hawaiian calderas: An origin through loading by shallow intrusions? J. Geophys. Res. Solid Earth 1988, 93, 14773–14784. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, F.R.; Roult, G.; Hejrani, B.; Michon, L.; Ferrazzini, V.; Barruol, G.; Massin, F.; Tkalčić, H.; Di Muro, A.; Peltier, A. Very- and ultra-long-period seismic signals prior to and during caldera formation on La Réunion Island. Sci. Rep. 2019, 9, 8068. [Google Scholar] [CrossRef] [Green Version]
- Tepp, G.; Hotovec-Ellis, A.; Shiro, B.; Johanson, I.; Thelen, W.; Haney, M.M. Seismic and geodetic progression of the 2018 summit caldera collapse of Kīlauea volcano. Earth Planet. Sci. Lett. 2020, 540, 116250. [Google Scholar] [CrossRef]
- Wadge, G. The variation of magma discharge during basaltic eruptions. J. Volcanol. Geotherm. Res. 1981, 11, 139–168. [Google Scholar] [CrossRef]
- Coppola, D.; James, M.R.; Staudacher, T.; Cigolini, C. A comparison of field- and satellite-derived thermal flux at Piton de la Fournaise: Implications for the calculation of lava discharge rate. Bull. Volcanol. 2010, 72, 341–356. [Google Scholar] [CrossRef]
- Vlastélic, I.; Gannoun, A.; Di Muro, A.; Gurioli, L.; Bachèlery, P.; Henot, J.M. Origin and fate of sulfide liquids in hotspot volcanism (La Réunion): Pb isotope constraints from residual Fe–Cu oxides. Geochim. Cosmochim. Acta 2016, 194, 179–192. [Google Scholar] [CrossRef]
- Sundermeyer, C.; Di Muro, A.; Gordeychik, B.; Wörner, G. Timescales of magmatic processes during the eruptive cycle 2014–2015 at Piton de la Fournaise, La Réunion, obtained from Mg–Fe diffusion modelling in olivine. Contrib. Mineral. Petrol. 2019, 175, 1. [Google Scholar] [CrossRef]
- Peltier, A.; Beauducel, F.; Villeneuve, N.; Ferrazzini, V.; Di Muro, A.; Aiuppa, A.; Taisne, B.; Derrien, A.; Jourde, K. Deep fluid transfer evidenced by surface deformation during the 2014–2015 unrest at Piton de la Fournaise volcano. J. Volcanol. Geotherm. Res. 2016, 321, 140–148. [Google Scholar] [CrossRef]
- Thornber, C.R. Kilauea East Rift Zone Magmatism: An Episode 54 Perspective. J. Petrol. 2003, 44, 1525–1559. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Thornber, C.R. Complex effusive events at Kīlauea as documented by the GOES satellite and remote video cameras. Bull. Volcanol. 1999, 61, 382–395. [Google Scholar] [CrossRef]
- Beauducel, F.; Peltier, A.; Villié, A.; Suryanto, W.; Beauducel, F.; Peltier, A. Mechanical Imaging of a Volcano Plumbing System From GNSS Unsupervised Modeling. Geophys. Res. Lett. 2020, 47, e2020GL089419. [Google Scholar] [CrossRef]
Eruption | (%) | (%) | (%) | Bulk Density (kg m–3) | Average Bulk Density (kg m–3) |
---|---|---|---|---|---|
April 2020 | 52 | 2.83–9.16 | 4.90 | 1142–1331 | 1267 |
February 2019 | 52 | 2.14–41.13 | 12.00 | 202–1348 | 1057 |
Aug–Oct 2015 | 52 | 2.00–10.70 | 5.50 | 1096–1354 | 1249 |
May 2015 | 52 | 2.40–3.00 | 2.70 | 1327–1342 | 1333 |
April 2007 | 40 | 4.70–53.30 | 44.20 | 1625–196 | 464 |
Eruption | Cumulative Bulk Lava Volume ( m3) | ||||
---|---|---|---|---|---|
Field | MIROVA | MODVOLC | Manual DC | Manual TA | |
April 2020 | 6.0–10.0 * | 2.9 1.0 | 3.9 2.0 | 1.8 0.6 | 2.3 1.1 |
February 2019 | 14.5 ** | 13.6 4.8 | 11.2 3.6 | 9.8 3.4 | 9.4 4.7 |
Aug–Oct 2015 | 36.6 *** | 42.8 1.5 | 79.3 23.8 | 39.0 13.7 | 36.2 18.1 |
May 2015 | 5.7 *** | 6.0 2.1 | 8.9 2.7 | 6.7 2.3 | 6.2 3.1 |
April 2007 | 185.0 *** | 126.1 63.0 **** | 48.9 24.4 | 46.2 23.1 | 52.2 26.1 |
Eruption | MODVOLC | MIROVA | MANUAL | ||||||
---|---|---|---|---|---|---|---|---|---|
Total Pixels | # Pixels Sat | % Pixels Sat | Total Pixels | # Pixels Sat | % Pixels Sat | Total Pixels | # Pixels Sat | % Pixels Sat | |
April 2020 | 21 | 0 | 0.0 | 125 | 4 | 3.2 | 77 | 2 | 2.6 |
February 2019 | 93 | 1 | 1.1 | 423 | 5 | 1.2 | 158 | 1 | 0.6 |
Aug–Oct 2015 | 591 | 0 | 0.0 | 1642 | 0 | 0.0 | 675 | 1 | 0.2 |
May 2015 | 96 | 1 | 1.0 | 336 | 0 | 0.0 | 130 | 0 | 0.0 |
April 2007 | 204 | 107 | 52.5 | 730 | 380 | 52.1 | 409 | 190 | 46.5 |
Eruption | |||||||
---|---|---|---|---|---|---|---|
Field | OMI 1050 | OMPS 1050 | TROP 1050 | OMI t | OMPS t | TROP t | |
April 2020 | 3.3 * | 3.5 1.6 | 19.4 8.8 | 8.4 3.8 | 3.1 2.2 | 16.2 11.5 | 6.3 4.5 |
February 2019 | 9.4 ** | 5.1 2.4 | 22.4 10.8 | 6.3 3.1 | 9.2 6.1 | 20.9 13.8 | 11.6 7.6 |
Aug–Oct 2015 | 23.8 *** | 3.9 1.8 | 10.5 4.8 | - | 24.5 17.2 | 35.3 24.7 | - |
May 2015 | 3.7 *** | 1.1 2.6 | 0.6 0.3 | - | 4.0 2.5 | 3.5 2.2 | - |
April 2007 | 120.3 *** | 369.8 178.9 | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verdurme, P.; Carn, S.; Harris, A.J.L.; Coppola, D.; Di Muro, A.; Arellano, S.; Gurioli, L. Lava Volume from Remote Sensing Data: Comparisons with Reverse Petrological Approaches for Two Types of Effusive Eruption. Remote Sens. 2022, 14, 323. https://doi.org/10.3390/rs14020323
Verdurme P, Carn S, Harris AJL, Coppola D, Di Muro A, Arellano S, Gurioli L. Lava Volume from Remote Sensing Data: Comparisons with Reverse Petrological Approaches for Two Types of Effusive Eruption. Remote Sensing. 2022; 14(2):323. https://doi.org/10.3390/rs14020323
Chicago/Turabian StyleVerdurme, Pauline, Simon Carn, Andrew J. L. Harris, Diego Coppola, Andrea Di Muro, Santiago Arellano, and Lucia Gurioli. 2022. "Lava Volume from Remote Sensing Data: Comparisons with Reverse Petrological Approaches for Two Types of Effusive Eruption" Remote Sensing 14, no. 2: 323. https://doi.org/10.3390/rs14020323
APA StyleVerdurme, P., Carn, S., Harris, A. J. L., Coppola, D., Di Muro, A., Arellano, S., & Gurioli, L. (2022). Lava Volume from Remote Sensing Data: Comparisons with Reverse Petrological Approaches for Two Types of Effusive Eruption. Remote Sensing, 14(2), 323. https://doi.org/10.3390/rs14020323