Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study
Abstract
:1. Introduction
2. Generating Non-Gaussian Rough Surface
2.1. Roguh Surface Parameters
2.2. Surface Dimensions and Sampling Consideration
3. SAR Echo Simulations
3.1. Observation Geometry and Radar Parameters
3.2. SAR Signal Model
3.3. Computing the SAR Backscattered Field by an Improved Kirchhoff Method
3.4. Including Diffraction Fields
3.5. SAR Image Focusing
4. Statistical Properties of SAR Image of Non-Gaussian Rough Surfaces
4.1. Equivalent Number of Looks (ENL)
4.2. Rough Surface Index (RSI)
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guérin, C.A.; Holschneider, M.; Saillard, M. Electromagnetic scattering from multiscale rough surfaces. Waves Random Media 1997, 7, 331–349. [Google Scholar] [CrossRef]
- Zribi, M.; Ciarletti, V.; Taconet, O. Validation of a Rough Surface Model Based on Fractional Brownian Geometry with SIRC and ERASME Radar Data over Orgeval. Remote Sens. Environ. 2000, 73, 65–72. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, L.; Davidson, M. An analytical, numerical, and experimental study of backscattering from multiscale soil surfaces. Radio Sci. 2001, 36, 119–135. [Google Scholar] [CrossRef]
- Zribi, M.; Baghdadi, N.; Holah, N.; Fafin, O. New methodology for soil surface moisture estimation and its application to ENVISAT-ASAR multi-incidence data inversion. Remote Sens. Environ. 2005, 96, 485–496. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Kazuo, O.; Shahram, T.; Ronald, E.B. Dependence of speckle statistics on backscatter cross-section fluctuations in synthetic aperture radar images of rough surfaces. IEEE Trans. Geosci. Remote Sens. 1987, GE-25, 623–628. [Google Scholar]
- Yueh, S.H.; Kong, J.A.; Jao, J.K.; Shin, R.T.; Novak, L.M. K-distribution and polarimetric terrain radar clutter. J. Electromagn. Waves Appl. 1989, 3, 747–768. [Google Scholar] [CrossRef]
- Sarabandi, K.; Oh, Y. Effect of Antenna Footprint on the Statistics of Radar Backscattering from Random Surfaces. In Proceedings of the 1995 International Geoscience and Remote Sensing Symposium, IGARSS ′95. Quantitative Remote Sensing for Science and Applications, Firenze, Italy, 10–14 July 1995; pp. 927–929. [Google Scholar]
- Nesti, G.; Fortuny, J.; Sieber, A.J. Comparison of backscattered signal statistics as derived from indoor scatterometric and SAR experiments. IEEE Trans. Geosci. Remote Sens. 1996, 34, 1074–1083. [Google Scholar] [CrossRef]
- Franceschetti, G.; Migliaccio, M.; Riccio, D. An electromagnetic fractal-based model for the study of fading. Radio Sci. 1996, 31, 1749–1759. [Google Scholar] [CrossRef]
- Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. Physical-Based Models of Speckle for High Resolution SAR Images. In Proceedings of the IEEE International Geoscience & Remote Sensing Symposium, IGARSS 2010, Honolulu, HI, USA, 25–30 July 2010; pp. 2980–2983. [Google Scholar]
- Martino, G.D.; Iodice, A.; Riccio, D.; Ruello, G. A physical approach for SAR speckle simulation: First results. Eur. J. Remote Sens. 2013, 46, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.S.; Tsang, L.; Chen, K.L.; Liao, T.H.; Lee, J.S. Polarimetric simulations of SAR at L-Band over bare soil using scattering matrices of random rough surfaces from numerical three-dimensional solutions of Maxwell equations. IEEE Trans. Geosci. Remote Sens. 2014, 52, 7048–7058. [Google Scholar] [CrossRef]
- Martino, G.D.; Iodice, G.; Riccio, D.; Ruello, G. Equivalent number of scatterers for SAR speckle modeling. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2555–2564. [Google Scholar] [CrossRef]
- Jin, M.; Chen, K.S.; Xie, D.F. On the very high-resolution radar image statistics of the exponentially correlated rough surface: Experimental and numerical studies. Remote Sens. 2018, 10, 1369. [Google Scholar] [CrossRef] [Green Version]
- Migliaccio, M.; Huang, L.Q.; Buono, A. SAR speckle dependence on ocean surface wind field. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5447–5455. [Google Scholar] [CrossRef]
- Cristea, A.; Doulgeris, A.P.; Eltoft, T. A Noncentral and Non-Gaussian Probability Model for SAR Data. In Proceedings of the Scandinavian Conference on Image Analysis, Tromsø, Norway, 12–14 June 2017. [Google Scholar] [CrossRef] [Green Version]
- Stark, H.; Woods, J.W. Probability, Random Processes and Estimation Theory for Engineers, 4th ed.; Prentice Hall: Englewood Cliffs, NJ, USA, 2011. [Google Scholar]
- Huang, N.E.; Long, S.R.; Tung, C.-C.; Yuan, Y.; Bliven, L.F. A non-Gaussian statistical model for surface elevation of nonlinear random wave fields. J. Geophys. Res. 1983, 88, 7597. [Google Scholar] [CrossRef]
- Brown, G.S. A theory for near-normal incidence microwave scattering from first-year sea ice. Radio Sci. 1982, 17, 233–243. [Google Scholar] [CrossRef]
- Beckmann, P. Scattering by non-Gaussian surfaces. IEEE Trans. Antenna Propag. 1973, AP-21, 169–175. [Google Scholar] [CrossRef]
- Brown, G.S. Scattering from a class of randomly rough surfaces. Radio Sci. 1982, 17, 1274–1280. [Google Scholar] [CrossRef]
- Eom, H.J.; Fung, A.K. A comparison between backscattering coefficients using Gaussian and non-Gaussian surface statistics. IEEE Trans. Antennas Propag. 1983, AP-31, 635–638. [Google Scholar] [CrossRef]
- Wu, S.C.; Chen, M.F.; Fung, A.K. Scattering from non-gaussian randomly rough surfaces-cylindrical case. IEEE Trans. Geosci. Remote Sens. 1988, 26, 790–798. [Google Scholar] [CrossRef]
- Pérez-Ràfols, F.; Almqvist, A. Generating randomly rough surfaces with given height probability distribution and power spectrum. Tribol. Int. 2019, 131, 591–604. [Google Scholar] [CrossRef]
- Jiang, R.; Chen, K.S.; Li, Z.L.; Du, G.Y.; Tian, W.J. Entropy measure of generating random rough surface for numerical simulation of wave scattering. IEEE Trans. Geosci. Remote Sens. 2020, 59, 3623–3641. [Google Scholar] [CrossRef]
- Hodaei, M.; Farhang, K. Effect of rough surface asymmetry on contact energy loss in hip implants. J. Mech. Med. Biol. 2016, 17, 1750023. [Google Scholar] [CrossRef]
- Chen, K.S. Radar Scattering and Imaging of Rough Surface: Modeling and Applications with MATLAB®; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Church, E.L.; Takacs, P.Z.; Stover J, C. Light Scattering from Non-Gaussian Surfaces. In Proceedings of the SPIE-The International Society for Optical Engineering, San Diego, CA, USA, 13–14 July 1995; Volume 2541, pp. 91–107. [Google Scholar]
- Bendat, J.S.; Piersol, A.G. Random Data: Analysis and Measurement Procedures, 4th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010. [Google Scholar]
- Chen, K.S. Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Blackledge, J.M. Quantitative Coherent Imaging: Theory, Methods and Some Applications; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Frey, P.J.; George, P.L. Mesh Generation: Application to Finite Elements, 2nd ed.; ISTE Ltd. and John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Tsang, L.; Ding, K.H.; Huang, S.H.; Xu, X. Electromagnetic computation in scattering of electromagnetic waves by random rough surface and dense media in microwave remote sensing of land surfaces. Proc. IEEE 2013, 101, 255–279. [Google Scholar] [CrossRef]
- Boardman, T. Getting Started in 3D with 3ds Max; Focal Press: Burlington, MA, USA, 2013. [Google Scholar]
- Jing, J.M. Theory and Computation of Electromagnetic Fields, 2nd ed.; Wiley-IEEE Press: New York, NY, USA, 2015. [Google Scholar]
- Graglia, R.D.; Peterson, A.F. Higher-Order Techniques in Computational Electromagnetics; SciTech Publishing: Raleigh, NC, USA, 2016. [Google Scholar]
- Fung, A.K. Microwave Scattering and Emission Models and Their Applications; Artech House: Norwood, MA, USA, 1994. [Google Scholar]
- Fung, A.K.; Li, Z.; Chen, K.S. Backscattering from a randomly rough dielectric surface. IEEE Trans. Geosci. Remote Sens. 1992, 30, 356–369. [Google Scholar] [CrossRef]
- De Adana, F.S.; Diego, I.G.; Blanco, O.G.; Lozano, P.; Catedra, M.F. Method based on physical optics for the computation of the radar cross section including diffraction and double effects of metallic and absorbing bodies modeled with parametric surfaces. IEEE Trans. Antennas Propagat. 2004, 52, 3295–3303. [Google Scholar] [CrossRef]
- Knott, E.F.; Senior, T.B.A. Comparison of three high-frequency diffraction techniques. Proc. IEEE 1974, 62, 1468–1474. [Google Scholar] [CrossRef]
- Cumming, I.; Wong, F. Digital Signal Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Norwood, MA, USA, 2004. [Google Scholar]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. J. Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Joughin, I.R.; Percival, D.B.; Winebrenner, D.P. Maximum likelihood estimation of K distribution parameters for SAR data. IEEE Trans. Geosci. Remote Sens. 1993, 31, 989–999. [Google Scholar] [CrossRef]
RMS Height [λ] | Correlation Length [λ] | Simulated RMS Height [λ] (Gaussian HPD/Weibull HPD) | Simulated Correlation Length at x-Direction [λ] (Gaussian PSD/Exponential PSD) | Simulated Correlation Length at y-Direction [λ] (Gaussian PSD/Exponential PSD) |
---|---|---|---|---|
0.13 | 0.26 | 0.1300/0.1300 | 0.2656/0.2650 | 0.2655/0.2649 |
0.39 | 0.78 | 0.3900/0.3901 | 0.7855/0.7814 | 0.7852/0.7809 |
0.78 | 1.56 | 0.7799/0.7801 | 1.5535/1.5417 | 1.5527/1.5384 |
0.195 | 0.78 | 0.1950/0.1950 | 0.7855/0.7814 | 0.7852/0.7809 |
0.39 | 1.56 | 0.3900/0.3901 | 1.5535/1.5417 | 1.5527/1.5384 |
0.52 | 1.56 | 0.5199/0.5201 | 1.5535/1.5417 | 1.5527/1.5384 |
Parameter | Value |
---|---|
Surface size (Lx, Ly) | 120 × 120 [λ] |
Surface sampling number (Nx, Ny) | 2048 × 2048 [samples] |
Correlation length ) | 0.26, 0.78, 1.56 [λ] |
Root mean square height ) | 0.13, 0.195, 0.39, 0.78 [λ] |
Dielectric constant | 20-j4.0 |
Parameter | Value |
---|---|
Center frequency | 1.27 GHz |
Sampling rate | 591 MHz |
Chirp bandwidth | 591 MHz |
PRF | 213.4 Hz |
Duty cycle | 6.8% |
Antenna size | 0.5 m × 5.2 m |
Reference ellipsoid | WGS84 |
Look angle | 72/50/30 degrees |
Polarization | HH |
Range dimension | 350 samples |
Azimuth dimension | 1100 samples |
Parameter | Value |
---|---|
Azimuth effective antenna size | 0.4929 m |
Doppler rate | 15.94 Hz/s |
Exposure time | 12.2035 s |
Doppler bandwidth | 194.5791 Hz |
Range resolution | 0.2536 m |
Azimuth resolution | 0.2463 m |
Range spacing | 0.2536 m |
Azimuth spacing | 0.2536 m |
Roughness (λ) | ENL Gaussian HPD | ENL Weibull HPD | ||||||
---|---|---|---|---|---|---|---|---|
Look = 1 | Look = 2 | Look = 3 | Look = 4 | Look = 1 | Look = 2 | Look = 3 | Look = 4 | |
σ = 0.13 l = 0.26 | 0.9254 | 1.7656 | 2.5374 | 3.2656 | 0.9711 | 1.6908 | 2.2601 | 2.8752 |
σ = 0.39 l = 0.78 | 0.9716 | 1.6878 | 2.3256 | 2.9120 | 0.9341 | 1.2969 | 1.5534 | 1.7316 |
σ = 0.78 l = 1.56 | 0.9587 | 1.7194 | 2.4884 | 3.0914 | 0.9220 | 1.4011 | 1.7862 | 2.2119 |
σ = 0.195 l = 0.78 | 0.9865 | 1.5452 | 2.0854 | 2.5273 | 0.9511 | 1.1781 | 1.3004 | 1.3809 |
σ = 0.39 l = 1.56 | 0.9885 | 1.6948 | 2.3605 | 2.9315 | 0.9220 | 1.3101 | 1.5076 | 1.7723 |
Roughness (λ) | ~Slope (s/l) | HPD | ENL | R2 (Avg.) | R2L1, real | R2L1, imag | RSI |
---|---|---|---|---|---|---|---|
Look = 1 | Look = 1 | Look = 1 | Look = 1 | Look = 1 | |||
σ = 0.13 l = 0.26 | 1:2 | Gaussian | 1.1011 | 0.9779 | 0.9879 | 0.9855 | 0.9692 |
Weibull | 0.9926 | 0.9359 | 0.9884 | 0.9866 | 0.9690 | ||
σ = 0.39 l = 0.78 | 1:2 | Gaussian | 1.0235 | 0.9778 | 0.9883 | 0.9850 | 0.9798 |
Weibull | 1.1220 | 0.9467 | 0.9062 | 0.9029 | 0.8655 | ||
σ = 0.78 l = 1.56 | 1:2 | Gaussian | 0.7954 | 0.9778 | 0.9816 | 0.9776 | 0.9435 |
Weibull | 0.4688 | 0.8052 | 0.6757 | 0.6868 | 0.6337 | ||
σ = 0.195 l = 0.78 | 1:4 | Gaussian | 1.0936 | 0.9843 | 0.9899 | 0.9865 | 0.9733 |
Weibull | 1.0174 | 0.9629 | 0.9780 | 0.9732 | 0.9690 | ||
σ = 0.39 l = 1.56 | 1:4 | Gaussian | 0.9853 | 0.9843 | 0.9875 | 0.9891 | 0.9843 |
Weibull | 0.8159 | 0.9567 | 0.9076 | 0.8923 | 0.8856 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, C.-Y.; Chen, K.-S.; Yang, Y.; Zhang, Y.; Wu, L. Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study. Remote Sens. 2022, 14, 311. https://doi.org/10.3390/rs14020311
Chiang C-Y, Chen K-S, Yang Y, Zhang Y, Wu L. Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study. Remote Sensing. 2022; 14(2):311. https://doi.org/10.3390/rs14020311
Chicago/Turabian StyleChiang, Cheng-Yen, Kun-Shan Chen, Ying Yang, Yang Zhang, and Lingbing Wu. 2022. "Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study" Remote Sensing 14, no. 2: 311. https://doi.org/10.3390/rs14020311
APA StyleChiang, C. -Y., Chen, K. -S., Yang, Y., Zhang, Y., & Wu, L. (2022). Radar Imaging Statistics of Non-Gaussian Rough Surface: A Physics-Based Simulation Study. Remote Sensing, 14(2), 311. https://doi.org/10.3390/rs14020311