Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Overview
2.3. Footprint Calculation
2.4. Evaluation of Spatial Representativeness
3. Results
3.1. Changes in Monthly Footprint Climatology
3.2. Spatial Heterogeneity over the Study Site
3.3. Spatial Representativeness with Target Vegetation Type
3.4. Spatial Representativeness with Vegetation Index
4. Discussion
4.1. Implications for Ecosystem Respiration and Upscaling of Flux Measurements
4.2. Significance of Understanding Spatial Heterogeneity and Footprint Modeling
4.3. Implications of Remote Sensing Products
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lowry, A.L.; McGowan, H.A.; Gray, M.A. Multi-year carbon and water exchanges over contrasting ecosystems on a sub-tropical sand island. Agric. For. Meteorol. 2021, 304–305, 108404. [Google Scholar] [CrossRef]
- Running, S.; Baldocchi, D.; Turner, D.; Gower, S.; Bakwin, P.; Hibbard, K. A Global Terrestrial Monitoring Network Integrating Tower Fluxes, Flask Sampling, Ecosystem Modeling and EOS Satellite Data. Remote Sens. Environ. 1999, 70, 108–127. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Chen, L.; Dirmeyer, P.A.; Guo, Z.; Schultz, N.M. Pairing FLUXNET sites to validate model representations of land-use/land-cover change. Hydrol. Earth Syst. Sci. 2018, 22, 111–125. [Google Scholar] [CrossRef] [Green Version]
- Ricciuto, D.; Sargsyan, K.; Thornton, P. The Impact of Parametric Uncertainties on Biogeochemistry in the E3SM Land Model. J. Adv. Model. Earth Syst. 2018, 10, 297–319. [Google Scholar] [CrossRef]
- Aubinet, M.; Grelle, A.; Ibrom, A.; Rannik, U.; Moncrieff, J.; Foken, T.; Kowalski, A.S.; Martin, P.H.; Berbigier, P.; Bernhofer, C.; et al. Estimates of the annual net carbon and water exchange of forests: The EUROFLUX methodology. Adv. Ecol. Res. 1999, 30, 113–175. [Google Scholar] [CrossRef]
- Baldocchi, D.D.; Falge, E.; Gu, L.H.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2434. [Google Scholar] [CrossRef]
- Law, B.; Falge, E.; Gu, L.; Baldocchi, D.; Bakwin, P.; Berbigier, P.; Davis, K.; Dolman, A.; Falk, M.; Fuentes, J.; et al. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agric. For. Meteorol. 2002, 113, 97–120. [Google Scholar] [CrossRef] [Green Version]
- Baldocchi, D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Glob. Chang. Biol. 2020, 26, 242–260. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, S.; Li, X.; Chen, J.; Liu, S.; Jia, K.; Zhang, X.; Xiao, Z.; Fisher, J.B.; Mu, Q.; et al. Improving global terrestrial evapotranspiration estimation using support vector machine by integrating three process-based algorithms. Agric. For. Meteorol. 2017, 242, 55–74. [Google Scholar] [CrossRef]
- Badgley, G.; Anderegg, L.D.L.; Berry, J.A.; Field, C.B. Terrestrial gross primary production: Using NIRV to scale from site to globe. Glob. Chang. Biol. 2019, 25, 3731–3740. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, D.; Gan, R.; Chiew, F.H.S.; McVicar, T.R.; Zhang, Q.; Yang, Y. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017. Remote Sens. Environ. 2019, 222, 165–182. [Google Scholar] [CrossRef]
- Cai, W.J.; Prentice, L.C. Recent trends in gross primary production and their drivers: Analysis and modelling at flux-site and global scales Environ. Res. Lett. 2020, 15, 124050. [Google Scholar] [CrossRef]
- Elnashar, A.; Wang, L.; Wu, B.; Zhu, W.; Zeng, H. Synthesis of global actual evapotranspiration from 1982 to 2019. Earth Syst. Sci. Data 2021, 13, 447–480. [Google Scholar] [CrossRef]
- Pan, X.X.; Lei, H.M.; Cong, Z.T.; Yang, H.B.; Duan, L.M.; Yang, D.W. Long term variation of evapotranspiration and water balance based on upscaling eddy covariance observations over the temperate semi-arid grassland of China. Agric. For. Meterol. 2021, 308–309, 108566. [Google Scholar]
- Tagesson, T.; Tian, F.; Schurgers, G.; Horion, S.; Scholes, R.; Ahlström, A.; Ardö, J.; Moreno, A.; Madani, N.; Olin, S.; et al. A physiology-based Earth observation model indicates stagnation in the global gross primary production during recent decades. Glob. Chang. Biol. 2021, 27, 836–854. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, S.; Wang, Y.; Valbuena, R.; Wu, Y.; Kutia, M.; Zheng, Y.; Lu, W.; Zhu, Y.; Zhao, M.; et al. Tighten the Bolts and Nuts on GPP Estimations from Sites to the Globe: An Assessment of Remote Sensing Based LUE Models and Supporting Data Fields. Remote Sens. 2021, 13, 168. [Google Scholar] [CrossRef]
- Schmid, H.P.; Lloyd, C.R. Spatial representativeness and the location bias of flux footprints over inhomogeneous areas. Agric. For. Meteorol. 1999, 93, 195–209. [Google Scholar] [CrossRef]
- Gelybó, G.; Barcza, Z.; Kern, A.; Kljun, N. Effect of spatial heterogeneity on the validation of remote sensing based GPP estimations. Agric. For. Meteorol. 2013, 174–175, 43–53. [Google Scholar] [CrossRef]
- Schuepp, P.H.; Leclerc, M.Y.; MacPherson, J.I.; Desjardins, R.L. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Bound.-Layer Meteorol. 1990, 50, 355–373. [Google Scholar] [CrossRef]
- Schmid, H. Experimental design for flux measurements: Matching scales of observations and fluxes. Agric. For. Meteorol. 1997, 87, 179–200. [Google Scholar] [CrossRef]
- Yi, C. Momentum Transfer within Canopies. J. Appl. Meteorol. Clim. 2008, 47, 262–275. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.M.; Caselles, V.; Rubio, E.M. Analysis of the energy balance closure over a FLUXNET boreal forest in Finland. Hydrol. Earth Syst. Sci. 2010, 14, 1487–1497. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Black, T.A.; Arain, M.A.; Barr, A.G.; Bourque, C.P.-A.; Flanagan, L.; et al. Characterizing spatial representativeness of flux tower eddy-covariance measurements across the Canadian Carbon Program Network using remote sensing and footprint analysis. Remote Sens. Environ. 2012, 124, 742–755. [Google Scholar] [CrossRef]
- Wang, H.; Jia, G.; Zhang, A.; Miao, C. Assessment of Spatial Representativeness of Eddy Covariance Flux Data from Flux Tower to Regional Grid. Remote Sens. 2016, 8, 742. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Hwang, T.; Schaaf, C.L.; Kljun, N.; Munger, J.W. Seasonal variation of source contributions to eddy-covariance CO2 measurements in a mixed hardwood-conifer forest. Agric. For. Meteorol. 2018, 253–254, 71–83. [Google Scholar] [CrossRef]
- Tuovinen, J.-P.; Aurela, M.; Hatakka, J.; Räsänen, A.; Virtanen, T.; Mikola, J.; Ivakhov, V.; Kondratyev, V.; Laurila, T. Interpreting eddy covariance data from heterogeneous Siberian tundra: Land-cover-specific methane fluxes and spatial representativeness. Biogeosciences 2019, 16, 255–274. [Google Scholar] [CrossRef] [Green Version]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Wylie, B.K.; Johnson, D.A.; Laca, E.; Saliendra, N.Z.; Gilmanovd, T.G.; Reed, B.C.; Tieszen, L.L.; Worstell, B.B. Calibration of remotely sensed, coarse resolution NDVI to CO2 fluxes in a sagebrush–steppe ecosystem. Remote Sens. Environ. 2003, 85, 243–255. [Google Scholar] [CrossRef]
- Sims, D.A.; Rahman, A.F.; Cordova, V.D.; El-Masri, B.Z.; Baldocchi, D.D.; Bolstad, P.V.; Flanagan, L.B.; Goldstein, A.H.; Hollinger, D.Y.; Misson, L.; et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS. Remote Sens. Environ. 2008, 112, 1633–1646. [Google Scholar] [CrossRef]
- Chen, B.; Ge, Q.; Fu, D.; Yu, G.; Sun, X.; Wang, S.; Wang, H. A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeosciences 2010, 7, 2943–2958. [Google Scholar] [CrossRef]
- Chu, H.; Luo, X.; Ouyang, Z.; Chan, W.S.; Dengel, S.; Biraud, S.C.; Torn, M.S.; Metzger, S.; Kumar, J.; Arain, M.A.; et al. Representativeness of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. For. Meteorol. 2021, 301–302, 108350. [Google Scholar] [CrossRef]
- Chen, B.; Coops, N.C.; Fu, D.; Margolis, H.A.; Amiro, B.D.; Barr, A.G.; Black, T.A.; Arain, M.A.; Bourque, C.P.-A.; Flanagan, L.B.; et al. Assessing eddy-covariance flux tower location bias across the Fluxnet-Canada Research Network based on remote sensing and footprint modelling. Agric. For. Meteorol. 2011, 151, 87–100. [Google Scholar] [CrossRef]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Wen, X.-F.; Wang, H.-M.; Wang, J.-L.; Yu, G.-R.; Sun, X.-M. Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003–2007. Biogeosciences 2010, 7, 357–369. [Google Scholar] [CrossRef] [Green Version]
- Tan, Z.-H.; Zhang, Y.-P.; Song, Q.-H.; Liu, W.-J.; Deng, X.-B.; Tang, J.-W.; Deng, Y.; Zhou, W.-J.; Yang, L.-Y.; Yu, G.-R.; et al. Rubber plantations act as water pumps in tropical China. Geophys. Res. Lett. 2011, 38, L24406. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Meng, P.; Zhang, J.; Li, J.; Zheng, N.; Huang, H. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos. Environ. 2012, 49, 257–267. [Google Scholar] [CrossRef]
- Tong, X.; Zhang, J.; Meng, P.; Li, J.; Zheng, N. Ecosystem water use efficiency in a warm-temperate mixed plantation in the North China. J. Hydrol. 2014, 512, 221–228. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Z.; Sun, G.; Fang, X.; Zha, T.; McNulty, S.; Chen, J.; Jin, Y.; Noormets, A. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China. For. Ecol. Manag. 2013, 300, 33–42. [Google Scholar] [CrossRef]
- Sun, S.; Meng, P.; Zhang, J.; Wan, X.; Zheng, N.; He, C. Partitioning oak woodland evapotranspiration in the rocky mountainous area of North China was disturbed by foreign vapor, as estimated based on non-steady-state 18O isotopic composition. Agric. For. Meteorol. 2014, 184, 36–47. [Google Scholar] [CrossRef]
- Gao, S.; Chen, J.; Tang, Y.; Xie, J.; Zhang, R.; Tang, J.; Zhang, X. Ecosystem carbon (CO2 and CH4) fluxes of a Populus dettoides plantation in subtropical China during and post clear-cutting. For. Ecol. Manag. 2015, 357, 206–219. [Google Scholar] [CrossRef]
- Xi, B.; Di, N.; Wang, Y.; Duan, J.; Jia, L. Modeling stand water use response to soil water availability and groundwater level for a mature Populus tomentosa plantation located on the North China Plain. For. Ecol. Manag. 2017, 391, 63–74. [Google Scholar] [CrossRef]
- Ma, J.; Jia, X.; Zha, T.; Bourque, C.P.-A.; Tian, Y.; Bai, Y.; Liu, P.; Yang, R.; Li, C.; Li, C.; et al. Ecosystem water use efficiency in a young plantation in Northern China and its relationship to drought. Agric. For. Meteorol. 2019, 275, 1–10. [Google Scholar] [CrossRef]
- Wen, X.-F.; Yu, G.-R.; Sun, X.-M.; Li, Q.-K.; Liu, Y.-F.; Zhang, L.-M.; Ren, C.-Y.; Fu, Y.-L.; Li, Z.-Q. Soil moisture effect on the temperature dependence of ecosystem respiration in a subtropical Pinus plantation of southeastern China. Agric. For. Meteorol. 2006, 137, 166–175. [Google Scholar] [CrossRef]
- Xu, K.; Metzger, S.; Desai, A.R. Upscaling tower-observed turbulent exchange at fine spatio-temporal resolution using environmental response functions. Agric. For. Meteorol. 2017, 232, 10–22. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.H.; Wei, J.; Wen, X.F.; Sun, X.M.; Guo, Q.J. Photosynthetic carbon isotope discrimination and effects on daytime nee partitioning in a subtropical mixed conifer plantation. Agric. For. Meteorol. 2019, 272–273, 143–155. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Wen, X.; Yang, F.; Ma, Z.; Sun, X.; Yu, G. Freezing-induced loss of carbon uptake in a subtropical coniferous plantation in southern China. Ann. For. Sci. 2011, 68, 1151–1161. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Hartmann, H.; Wang, H.; Li, Q.; Wang, Y.; Li, S. Carbon dynamics and stability between native Masson pine and exotic slash pine plantations in subtropical China. Forstwiss. Cent. 2014, 133, 307–321. [Google Scholar] [CrossRef]
- Dai, X.Q.; Wang, H.M.; Xu, M.J.; Yang, F.T.; Wen, X.F.; Chen, Z.; Zhang, L.M.; Sun, X.M.; Yu, G.R. An Observation Dataset of Carbon and Water Fluxes of Artificial Coniferous Forests in Qianyanzhou (2003–2010); Science Data Bank: Beijing, China, 2020. [Google Scholar]
- Zhang, L.; Luo, Y.; Chen, Z.; Su, W.; He, H.; Zhu, Z.; Sun, X.; Wang, Y.; Zhou, G.; Zhao, X.; et al. Carbon and Water Fluxes Observed by the Chinese Flux Observation and Research Network (2003–2005); Science Data Bank: Beijing, China, 2018. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. (Eds.) Eddy Covariance: A Practical Guide to Measurement and Data Analysis Series; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Schotanus, P.; Nieuwstadt, F.T.M.; De Bruin, H.R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Wilczak, J.M.; Oncley, S.P.; Stage, S.A. Sonic Anemometer Tilt Correction Algorithms. Boundary-Layer Meteorol. 2001, 99, 127–150. [Google Scholar] [CrossRef]
- Webb, E.K.; Pearman, G.I.; Leuning, R. Correction of the flux measurements for density effects due to heat and water vapor transfer. Q. J. R. Meteorol. Soc. 1980, 106, 85–100. [Google Scholar] [CrossRef]
- Moore, C.J. Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 1986, 37, 17–35. [Google Scholar] [CrossRef]
- Hollinger, D.Y.; Kelliher, F.M.; Byers, J.N.; Hunt, J.E.; McSeveny, T.M.; Weir, P.L. Carbon dioxideexchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 1994, 75, 134–150. [Google Scholar] [CrossRef]
- Foken, T.; Leuning, R.; Oncley, S.R.; Mauder, M.; Aubinet, M. Corrections and data quality. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–131. [Google Scholar]
- Reichstein, M.; Falge, E.; Baldocchi, D.; Papale, D.; Aubinet, M.; Berbigier, P.; Bernhofer, C.; Buchmann, N.; Gilmanov, T.; Granier, A.; et al. On the separation of net ecosystem exchange into assimilation and ecosystem respiration: Review and improved algorithm. Glob. Chang. Biol. 2005, 11, 1424–1439. [Google Scholar] [CrossRef]
- Papale, D.; Valentini, R. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Glob. Chang. Biol. 2003, 9, 525–535. [Google Scholar] [CrossRef]
- Jun, C.; Ban, Y.; Li, S. Open access to Earth land-cover map. Nature 2014, 514, 434. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Mi, N.; Yu, G.; Wang, P.; Wen, X.; Sun, X. A preliminary study for spatial representiveness of flux observation at ChinaFLUX sites. Sci. China Ser. D Earth Sci. 2006, 49 (Supp. II), 24–35. [Google Scholar] [CrossRef]
- Zhang, W.-J.; Wang, H.-M.; Yang, F.-T.; Yi, Y.-H.; Wen, X.-F.; Sun, X.-M.; Yu, G.-R.; Wang, Y.-D.; Ning, J.-C. Underestimated effects of low temperature during early growing season on carbon sequestration of a subtropical coniferous plantation. Biogeosciences 2011, 8, 1667–1678. [Google Scholar] [CrossRef]
- Zhang, H.; Wen, X. Flux footprint climatology estimated by three analytical models over a subtropical coniferous plantation in Southeast China. J. Meteorol. Res. 2015, 29, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Chen, J.; Davis, K.J.; Reichstein, M. Advances in upscaling of eddy covariance measurements of carbon and water fluxes. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Fu, D.J.; Chen, B.Z.; Zhang, H.F.; Wang, J.; Black, T.A.; Amiro, B.D.; Bohrer, G.; Bolstad, P.; Coulter, R.; Rahman, A.F.; et al. Estimating landscape net ecosystem exchange at high spatial-temporal resolution based on landsat data, an improved upscaling model framework, and eddy covariance flux measurements. Remote Sens. Environ. 2014, 141, 90–104. [Google Scholar] [CrossRef]
- Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Zona, D.; Sachs, T. Upscaling surface energy fluxes over the North Slope of Alaska using airborne eddy-covariance measurements and environmental response functions. Atmos. Chem. Phys. 2018, 18, 10007–10023. [Google Scholar] [CrossRef] [Green Version]
- Reuss-Schmidt, K.; Levy, P.E.; Oechel, W.; Tweedie, C.E.; Wilson, C.J.; Zona, D. Understanding spatial variability of methane fluxes in Arctic wetlands through footprint modelling. Environ. Res. Lett. 2019, 14, 125010. [Google Scholar] [CrossRef]
- Junttila, S.; Kelly, J.; Kljun, N.; Aurela, M.; Klemedtsson, L.; Lohila, A.; Nilsson, M.; Rinne, J.; Tuittila, E.-S.; Vestin, P.; et al. Upscaling Northern Peatland CO2 Fluxes Using Satellite Remote Sensing Data. Remote Sens. 2021, 13, 818. [Google Scholar] [CrossRef]
- Sun, G.; Hu, Z.; Sun, F.; Wang, J.; Xie, Z.; Lin, Y.; Huang, F. An analysis on the influence of spatial scales on sensible heat fluxes in the north Tibetan Plateau based on Eddy covariance and large aperture scintillometer data. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2016, 129, 965–976. [Google Scholar] [CrossRef]
- El-Madany, T.S.; Reichstein, M.; Perez-Priego, O.; Carrara, A.; Moreno, G.; Martín, M.P.; Pacheco-Labrador, J.; Wohlfahrt, G.; Nieto, H.; Weber, U.; et al. Drivers of spatio-temporal variability of carbon dioxide and energy fluxes in a Mediterranean savanna ecosystem. Agric. For. Meteorol. 2018, 262, 258–278. [Google Scholar] [CrossRef]
- Hannun, R.A.; Wolfe, G.M.; Kawa, S.R.; Hanisco, T.F.; Newman, P.A.; Alfieri, J.G.; Barrick, J.D.; Clark, K.L.; DiGangi, J.P.; Diskin, G.S.; et al. Spatial heterogeneity in CO2, CH4, and energy fluxes: Insights from airborne eddy covariance measurements over the Mid-Atlantic region. Environ. Res. Lett. 2020, 15, 035008. [Google Scholar] [CrossRef]
- Barcza, Z.; Kern, A.; Haszpra, L.; Kljun, N. Spatial representativeness of tall tower eddy covariance measurements using remote sensing and footprint analysis. Agric. For. Meteorol. 2009, 149, 795–807. [Google Scholar] [CrossRef]
- Xu, M.; Wang, H.; Wenjiang, Z.; Zhang, T.; Di, Y.; Wang, Y.; Wang, J.; Cheng, C.; Zhang, W. The full annual carbon balance of a subtropical coniferous plantation is highly sensitive to autumn precipitation. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Liu, S.; Li, H.; Ma, Y.; Wang, J.; Zhang, Y.; Xu, Z.; Xu, T.; Song, L.; Yang, X.; et al. Intercomparison of Six Upscaling Evapotranspiration Methods: From Site to the Satellite Pixel. J. Geophys. Res. Atmos. 2018, 123, 6777–6803. [Google Scholar] [CrossRef] [Green Version]
- Budishchev, A.; Mi, Y.; van Huissteden, J.; Belelli-Marchesini, L.; Schaepman-Strub, G.; Parmentier, F.J.W.; Fratini, G.; Gallagher, A.; Maximov, T.C.; Dolman, A.J. Evaluation of a plot-scale methane emission model using eddy covariance observations and footprint modelling. Biogeosciences 2014, 11, 4651–4664. [Google Scholar] [CrossRef] [Green Version]
- Kade, A.; Bret-Harte, M.S.; Euskirchen, E.S.; Edgar, C.; Fulweber, R.A. Upscaling of CO2fluxes from heterogeneous tundra plant communities in Arctic Alaska. J. Geophys. Res. Earth Surf. 2012, 117, G04007. [Google Scholar] [CrossRef]
- Damm, A.; Elbers, J.; Erler, A.; Gioli, B.; Hamdi, K.; Hutjes, R.; Kosvancova, M.; Meroni, M.; Miglietta, F.; Moersch, A.; et al. Remote sensing of sun-induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Glob. Chang. Biol. 2010, 16, 171–186. [Google Scholar] [CrossRef] [Green Version]
- Damm, A.; Guanter, L.; Verhoef, W.; Schläpfer, D.; Garbari, S.; Schaepman, M. Impact of varying irradiance on vegetation indices and chlorophyll fluorescence derived from spectroscopy data. Remote Sens. Environ. 2015, 156, 202–215. [Google Scholar] [CrossRef]
- Magney, T.S.; Bowling, D.R.; Logan, B.; Grossmann, K.; Stutz, J.; Blanken, P.D.; Burns, S.P.; Cheng, R.; Garcia, M.A.; Köhler, P.; et al. Mechanistic evidence for tracking the seasonality of photosynthesis with solar-induced fluorescence. Proc. Natl. Acad. Sci. USA 2019, 116, 11640–11645. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Tang, J.; Mustard, J.F.; Lee, J.-E.; Rossini, M.; Joiner, J.; Munger, J.W.; Kornfeld, A.; Richardson, A.D. Solar-induced chlorophyll fluorescence that correlates with canopy photosynthesis on diurnal and seasonal scales in a temperate deciduous forest. Geophys. Res. Lett. 2015, 42, 2977–2987. [Google Scholar] [CrossRef]
- Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A.P.; Middleton, E.M.; Huemmrich, K.F.; Yoshida, Y.; Frankenberg, C. Global monitoring of terrestrial chlorophyll fluorescence from moderate-spectral-resolution near-infrared satellite measurements: Methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. 2013, 6, 2803–2823. [Google Scholar] [CrossRef] [Green Version]
- Wolanin, A.; Rozanov, V.; Dinter, T.; Noël, S.; Vountas, M.; Burrows, J.; Bracher, A. Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results. Remote Sens. Environ. 2015, 166, 243–261. [Google Scholar] [CrossRef]
- Xiao, J.; Davis, K.J.; Urban, N.M.; Keller, K.; Saliendra, N.Z. Upscaling carbon fluxes from towers to the regional scale: Influence of parameter variability and land cover representation on regional flux estimates. J. Geophys. Res. 2011, 116, G00J06. [Google Scholar] [CrossRef]
Month | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 |
---|---|---|---|---|---|---|---|---|
1 | 0.7920 | 0.7814 | 0.7857 | 0.8259 | 0.7892 | 0.7924 | 0.7709 | 0.8016 |
2 | 0.8093 | 0.8279 | 0.7722 | 0.8162 | 0.8241 | 0.7848 | 0.8241 | 0.7875 |
3 | 0.8447 | 0.8141 | 0.8345 | 0.8199 | 0.8293 | 0.8361 | 0.8236 | 0.8228 |
4 | 0.8433 | 0.8259 | 0.8559 | 0.8449 | 0.8502 | 0.8418 | 0.8474 | 0.8197 |
5 | 0.8408 | 0.8567 | 0.8443 | 0.8694 | 0.8643 | 0.8569 | 0.8438 | 0.8541 |
6 | 0.8649 | 0.8589 | 0.8645 | 0.8995 | 0.8532 | 0.8648 | 0.8786 | 0.8527 |
7 | 0.8680 | 0.8690 | 0.8715 | 0.8189 | 0.8805 | 0.8696 | 0.8823 | 0.8883 |
8 | 0.8647 | 0.8577 | 0.8520 | 0.8765 | 0.8698 | 0.8765 | 0.8546 | 0.8896 |
9 | 0.8516 | 0.8529 | 0.8355 | 0.8288 | 0.8399 | 0.8363 | 0.8296 | 0.8357 |
10 | 0.8250 | 0.8223 | 0.8250 | 0.8452 | 0.8221 | 0.8286 | 0.8330 | 0.8100 |
11 | 0.8318 | 0.8284 | 0.8259 | 0.8072 | 0.8093 | 0.8175 | 0.7712 | 0.8212 |
12 | 0.7482 | 0.7856 | 0.7375 | 0.8165 | 0.8023 | 0.7895 | 0.7961 | 0.7480 |
Date | EVI of the Source Area | Mean EVI within the Pixel | Bias |
---|---|---|---|
2010.10.3 | 0.4482 | 0.4548 | −0.0066 |
2010.10.8 | 0.4489 | 0.4620 | −0.0136 |
2010.10.15 | 0.4566 | 0.4585 | −0.0019 |
2010.10.17 | 0.4521 | 0.4676 | −0.0155 |
2010.10.20 | 0.4607 | 0.4605 | 0.0002 |
2010.10.27 | 0.4536 | 0.4687 | −0.0151 |
Date | FTVT of the Source Area | Mean FTVT within the Pixel | Bias |
---|---|---|---|
2010.10.3 | 0.9125 | 0.5075 | 0.4050 |
2010.10.8 | 0.9594 | 0.5036 | 0.4558 |
2010.10.15 | 0.8982 | 0.5793 | 0.3189 |
2010.10.17 | 0.9414 | 0.5742 | 0.3672 |
2010.10.20 | 0.8248 | 0.5616 | 0.2632 |
2010.10.27 | 0.8744 | 0.5724 | 0.3020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, W.; Rong, X.; Yan, W.; Qi, X.; Wang, H.; Jin, S.; Ai, J. Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China. Remote Sens. 2022, 14, 5022. https://doi.org/10.3390/rs14195022
Xiang W, Rong X, Yan W, Qi X, Wang H, Jin S, Ai J. Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China. Remote Sensing. 2022; 14(19):5022. https://doi.org/10.3390/rs14195022
Chicago/Turabian StyleXiang, Wei, Xingxing Rong, Wei Yan, Xiaowen Qi, Hesong Wang, Shaofei Jin, and Jinlong Ai. 2022. "Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China" Remote Sensing 14, no. 19: 5022. https://doi.org/10.3390/rs14195022
APA StyleXiang, W., Rong, X., Yan, W., Qi, X., Wang, H., Jin, S., & Ai, J. (2022). Spatial Representativeness of Eddy Covariance Measurements in a Coniferous Plantation Mixed with Cropland in Southeastern China. Remote Sensing, 14(19), 5022. https://doi.org/10.3390/rs14195022