Evaluation of Wind and Solar Insolation Influence on Ocean Near-Surface Temperature from In Situ Observations and the Geostationary Himawari-8 Satellite
Abstract
:1. Introduction
2. Data
3. Results
3.1. Comparison of Satellite Skin SST and Bulk SST of Drifter, Ship, and Argo Data in Adjacent Waters of Taiwan
3.2. Comparison of Satellite Skin SST and Buoy Bulk SST at a Fixed Position on Monthly and Diurnal Timescales
3.3. Effects of Wind and Solar Insolation on the Ocean Near-Surface Temperature Layer
4. Discussion
5. Summary
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Jan. | Feb. | Mar. | Apr. | May. | Jun. | Jul. | Aug. | Sep. | Oct. | Nov. | Dec. | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
All | 1514 | 3220 | 2938 | 1419 | 960 | 995 | 1990 | 1070 | 1787 | 2336 | 2237 | 1206 |
Ship | 387 | 550 | 756 | 713 | 544 | 455 | 737 | 601 | 638 | 1014 | 600 | 287 |
Drifter | 1117 | 2658 | 2171 | 695 | 411 | 535 | 1249 | 462 | 1141 | 1310 | 1619 | 914 |
Argo | 10 | 12 | 11 | 11 | 5 | 5 | 4 | 7 | 8 | 12 | 18 | 5 |
References
- Donlon, C.; Robinson, I.; Casey, K.S.; Vazquez-Cuervo, J.; Armstrong, E.; Arino, O.; Gentemann, C.; May, D.; LeBorgne, P.; Piollé, J.; et al. The global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bull. Am. Meteorol. Soc. 2007, 88, 1197–1214. [Google Scholar] [CrossRef]
- Barton, I.J. Interpretation of satellite-derived sea surface temperatures. Adv. Space Res. 2001, 28, 165–170. [Google Scholar] [CrossRef]
- Minnett, P.J. Radiometric measurements of the sea-surface skin temperature: The competing roles of the diurnal thermocline and the cool skin. Int. J. Remote Sens. 2003, 24, 5033–5047. [Google Scholar] [CrossRef]
- Ward, B. Near-surface ocean temperature. J. Geophys. Res. Oceans 2006, 111, C02004. [Google Scholar] [CrossRef] [Green Version]
- Gentemann, C.L.; Minnett, P.J. Radiometric measurements of ocean surface thermal variability. J. Geophys. Res. Oceans 2008, 113, C08017. [Google Scholar] [CrossRef] [Green Version]
- Murray, M.J.; Allen, M.R.; Merchant, C.J.; Harris, A.R.; Donlon, C.J. Direct observations of skin-bulk SST variability. Geophys. Res. Lett. 2000, 27, 1171–1174. [Google Scholar] [CrossRef] [Green Version]
- Alappattu, D.P.; Wang, Q.; Yamaguchi, R.; Lind, R.J.; Reynolds, M.; Christman, A.J. Warm layer and cool skin corrections for bulk water temperature measurements for air-sea interaction studies. J. Geophys. Res. Oceans 2017, 122, 6470–6481. [Google Scholar] [CrossRef]
- Ruiz-de la Torre, M.C.; Maske, H.; Ochoa, J.; Almeda-Jauregui, C.O. Maintenance of coastal surface blooms by surface temperature stratification and wind drift. PLoS ONE 2013, 8, e58958. [Google Scholar] [CrossRef]
- Zhang, H.; Babanin, A.V.; Liu, Q.; Ignatov, A. Cool skin signals observed from Advanced Along-Track Scanning Radiometer (AATSR) and in situ SST measurements. Remote Sens. Environ. 2019, 226, 38–50. [Google Scholar] [CrossRef]
- Zhang, H.; Beggs, H.; Ignatov, A.; Babanin, A.V. Nighttime cool skin effect observed from Infrared SST Autonomous Radiometer (ISAR) and depth temperatures. J. Atmos. Ocean. Technol. 2020, 37, 33–46. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, F.; Wang, X.; Wang, D.; Gulev, S.K. Cool skin effect and its impact on the computation of the latent heat flux in the South China Sea. J. Geophys. Res. Oceans 2021, 126, 2020JC016498. [Google Scholar] [CrossRef]
- Wong, E.W.; Minnett, P.J. The response of the ocean thermal skin layer to variations in incident infrared radiation. J. Geophys. Res. Oceans 2018, 123, 2475–2493. [Google Scholar] [CrossRef]
- Hughes, K.G.; Moum, J.N.; Shroyer, E.L. Evolution of the velocity structure in the diurnal warm layer. J. Phys. Oceanogr. 2020, 50, 615–631. [Google Scholar] [CrossRef]
- Hughes, K.G.; Moum, J.N.; Shroyer, E.L. Heat transport through diurnal warm layers. J. Phys. Oceanogr. 2020, 50, 2885–2905. [Google Scholar] [CrossRef]
- Hughes, K.G.; Moum, J.N.; Shroyer, E.L.; Smyth, W.D. Stratified shear instabilities in diurnal warm layers. J. Phys. Oceanogr. 2021, 51, 2583–2598. [Google Scholar] [CrossRef]
- Gille, S.T. Diurnal variability of upper ocean temperatures from microwave satellite measurements and Argo profiles. J. Geophys. Res. Oceans 2012, 117, C11027. [Google Scholar] [CrossRef] [Green Version]
- Prytherch, J.; Farrar, J.T.; Weller, R.A. Moored surface buoy observations of the diurnal warm layer. J. Geophys. Res. Oceans 2013, 118, 4553–4569. [Google Scholar] [CrossRef] [Green Version]
- Matthews, A.J.; Baranowski, D.B.; Heywood, K.J.; Flatau, P.J.; Schmidtko, S. The surface diurnal warm layer in the Indian Ocean during CINDY/DYNAMO. J. Clim. 2014, 27, 9101–9122. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Minnett, P.J.; Berkelmans, R.; Hendee, J.; Manfrino, C. Diurnal warming in shallow coastal seas: Observations from the Caribbean and Great Barrier Reef regions. Cont. Shelf Res. 2014, 82, 85–98. [Google Scholar] [CrossRef]
- Minnett, P.J.; Kilpatrick, K.A.; Podestá, G.P.; Evans, R.H.; Szczodrak, M.D.; Izaguirre, M.A.; Williams, E.J.; Walsh, S.; Reynolds, R.M.; Bailey, S.W.; et al. Skin sea-surface temperature from VIIRS on Suomi-NPP—NASA continuity retrievals. Remote Sens. 2020, 12, 3369. [Google Scholar] [CrossRef]
- Chung, H.W.; Liu, C.C. Spatiotemporal variation of cold eddies in the upwelling zone off northeastern Taiwan revealed by the geostationary satellite imagery of ocean color and sea surface temperature. Sustainability 2019, 11, 6979. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Huang, D. Short-term variations in the surface upwelling off northeastern Taiwan observed via satellite data. J. Geophys. Res. Oceans 2019, 124, 939–954. [Google Scholar] [CrossRef]
- Yin, W.; Ma, Y.; Wang, D.; He, S.; Huang, D. Surface Upwelling off the Zhoushan Islands, East China Sea, from Himawari-8 AHI Data. Remote Sens. 2022, 14, 3261. [Google Scholar] [CrossRef]
- Hsu, P.C.; Lee, H.J.; Zheng, Q.; Lai, J.W.; Su, F.C.; Ho, C.R. Tide-Induced Periodic Sea Surface Temperature Drops in the Coral Reef Area of Nanwan Bay, Southern Taiwan. J. Geophys. Res. Oceans 2020, 125, e2019JC015226. [Google Scholar] [CrossRef]
- Hsu, P.C.; Ho, C.Y.; Lee, H.J.; Lu, C.Y.; Ho, C.R. Temporal variation and spatial structure of the Kuroshio-induced submesoscale island vortices observed from GCOM-C and Himawari-8 data. Remote Sens. 2020, 12, 883. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Xie, G.; Zhao, J.; Lei, Y.; Xie, J.; Pang, W. Mapping Diurnal Variability of the Wintertime Pearl River Plume Front from Himawari-8 Geostationary Satellite Observations. Water 2021, 14, 43. [Google Scholar] [CrossRef]
- Tu, Q.; Hao, Z. Validation of Sea Surface Temperature Derived From Himawari-8 by JAXA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 448–459. [Google Scholar] [CrossRef]
- Wirasatriya, A.; Hosoda, K.; Setiawan, J.D.; Susanto, R.D. Variability of diurnal sea surface temperature during short term and high SST event in the western equatorial pacific as revealed by satellite data. Remote Sens. 2020, 12, 3230. [Google Scholar] [CrossRef]
- Yang, Y.C.; Lu, C.Y.; Huang, S.J.; Yang, T.Z.; Chang, Y.C.; Ho, C.R. On the Reconstruction of Missing Sea Surface Temperature Data from Himawari-8 in Adjacent Waters of Taiwan Using DINEOF Conducted with 25-h Data. Remote Sens. 2022, 14, 2818. [Google Scholar] [CrossRef]
- Yang, M.; Guan, L.; Beggs, H.; Morgan, N.; Kurihara, Y.; Kachi, M. Comparison of Himawari-8 AHI SST with shipboard skin SST measurements in the Australian region. Remote Sens. 2020, 12, 1237. [Google Scholar] [CrossRef]
- Xu, F.; Ignatov, A. In situ SST quality monitor (iQuam). J. Atmos. Ocean. Technol. 2014, 31, 164–180. [Google Scholar] [CrossRef]
- Kurihara, Y.; Murakami, H.; Kachi, M. Sea surface temperature from the new Japanese geostationary meteorological Himawari-8 satellite. Geophys. Res. Lett. 2016, 43, 1234–1240. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Murakami, H.; Ogata, K.; Kachi, M. A quasi-physical sea surface temperature method for the split-window data from the Second-generation Global Imager (SGLI) onboard the Global Change Observation Mission-Climate (GCOM-C) satellite. Remote Sens. Environ. 2021, 257, 112347. [Google Scholar] [CrossRef]
Total | Commercial Ships | Drifting Buoys | Argo Floats |
---|---|---|---|
21,672 | 7282 | 14,282 | 108 |
ID | Name | Location | Number | Distance from Shore | Group |
---|---|---|---|---|---|
A | Matsu | 26°21′09″N, 120°30′55″E | 6577 | 1.4 km | II |
B | Pengjiayu | 25°36′15″N, 122°03′31″E | 2290 | 2.9 km | II |
C | Fugui Cape | 25°18′16″N, 121°32′03″E | 2593 | 650 m | III |
D | Longdong | 25°05′52″N, 121°55′21″E | 1795 | 300 m | III |
E | Guishandao | 24°50′55″N, 121°55′34″E | 5495 | 900 m * | II |
F | Hsinchu | 24°45′46″N, 120°50′34″E | 11,632 | 4.8 km | II |
G | Taichung | 24°12′56″N, 120°24′48″E | 4412 | 4.8 km ** | III |
H | Hualien | 24°01′52″N, 121°37′57″E | 2945 | 300 m | III |
I | Chimi | 23°11′02″N, 119°40′00″E | 8944 | 6.7 km *** | III |
J | Cheng-Kung | 23°07′57″N, 121°25′13″E | 2268 | 600 m | III |
K | Xiao Liuqiu | 22°18′58″N, 120°22′18″E | 10,099 | 1.15 km | II |
L | Lanyu | 22°04′31″N, 121°34′58″E | 1088 | 350 m | II |
M | Taitung Open Ocean | 21°45′59″N, 124°04′27″E | 3404 | **** | I |
N | Pratas | 21°04′24″N, 118°49′12″E | 8245 | **** | I |
Data | R | RMSE (°C) | Mean Bias (°C) | % |
---|---|---|---|---|
Random point | ||||
Ship | 0.9509 | 0.96 | 0.03 | 52.0 |
Drifter | 0.9901 | 0.49 | 0.03 | 48.9 |
Argo | 0.9761 | 0.46 | −0.11 | 31.5 |
Fixed buoy (Group I) | ||||
M (Taitung Open Ocean) | 0.9436 | 0.70 | 0.18 | 63.3 |
N (Pratas) | 0.9350 | 0.79 | 0.13 | 50.4 |
Fixed buoy (Group II) | ||||
A (Matsu) | 0.9874 | 0.90 | 0.00 | 53.5 |
B (Pengjiayu) | 0.9696 | 0.70 | 0.03 | 52.2 |
E (Guishandao) | 0.9479 | 0.99 | 0.02 | 51.1 |
F (Hsinchu) | 0.9798 | 0.96 | −0.14 | 48.0 |
K (Xiao Liuqiu) | 0.9229 | 0.97 | 0.37 | 63.3 |
L (Lanyu) | 0.8428 | 1.01 | 0.08 | 63.3 |
Fixed buoy (Group III) | ||||
C (Fugui Cape) | 0.9719 | 1.03 | −0.34 | 36.4 |
D (Longdong) | 0.9637 | 1.05 | −0.27 | 41.2 |
G (Taichung) | 0.9505 | 1.31 | 0.40 | 69.6 |
H (Hualien) | 0.7583 | 1.88 | −0.74 | 40.1 |
I (Chimi) | 0.9108 | 1.33 | 0.81 | 81.2 |
J (Cheng-Kung) | 0.8563 | 1.14 | −0.38 | 41.2 |
5th (°C) | 10th (°C) | 90th (°C) | 95th (°C) | Min. (°C) | Max. (°C) | |
---|---|---|---|---|---|---|
Ship | −1.61 | −1.16 | 1.21 | 1.62 | −4.95 | 3.64 |
Drifter | −0.66 | −0.50 | 0.63 | 0.89 | −2.92 | 3.15 |
Argo | −0.75 | −0.54 | 0.37 | 0.61 | −1.74 | 1.31 |
A (Matsu) | −1.48 | −1.13 | 1.06 | 1.35 | −5.00 | 4.00 |
B (Pengjiayu) | −1.13 | −0.76 | 0.79 | 1.12 | −3.30 | 3.19 |
C (Fugui Cape) | −2.00 | −1.60 | 0.80 | 1.18 | −4.74 | 3.75 |
D (Longdong) | −1.95 | −1.63 | 0.96 | 1.31 | −4.00 | 3.32 |
E (Guishandao) | −1.60 | −1.20 | 1.28 | 1.69 | −4.96 | 4.21 |
F (Hsinchu) | −1.80 | −1.43 | 0.97 | 1.26 | −4.00 | 5.72 |
G (Taichung) | −1.96 | −1.17 | 1.72 | 2.75 | −4.41 | 4.83 |
H (Hualien) | −3.75 | −3.14 | 1.40 | 1.77 | −6.28 | 3.20 |
I (Chimi) | −0.83 | −0.40 | 2.22 | 2.61 | −3.44 | 4.74 |
J (Cheng-Kung) | −2.33 | −1.90 | 0.83 | 1.13 | −6.84 | 4.38 |
K (Xiao Liuqiu) | −1.11 | −0.72 | 1.45 | 1.75 | −5.11 | 3.41 |
L (Lanyu) | −1.33 | −1.08 | 1.50 | 1.93 | −2.68 | 3.01 |
M (Taitung Open Ocean) | −0.90 | −0.57 | 1.08 | 1.36 | −4.30 | 2.83 |
N (Pratas) | −0.83 | −0.63 | 1.06 | 1.84 | −3.05 | 4.72 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hsu, P.-C. Evaluation of Wind and Solar Insolation Influence on Ocean Near-Surface Temperature from In Situ Observations and the Geostationary Himawari-8 Satellite. Remote Sens. 2022, 14, 4975. https://doi.org/10.3390/rs14194975
Hsu P-C. Evaluation of Wind and Solar Insolation Influence on Ocean Near-Surface Temperature from In Situ Observations and the Geostationary Himawari-8 Satellite. Remote Sensing. 2022; 14(19):4975. https://doi.org/10.3390/rs14194975
Chicago/Turabian StyleHsu, Po-Chun. 2022. "Evaluation of Wind and Solar Insolation Influence on Ocean Near-Surface Temperature from In Situ Observations and the Geostationary Himawari-8 Satellite" Remote Sensing 14, no. 19: 4975. https://doi.org/10.3390/rs14194975
APA StyleHsu, P. -C. (2022). Evaluation of Wind and Solar Insolation Influence on Ocean Near-Surface Temperature from In Situ Observations and the Geostationary Himawari-8 Satellite. Remote Sensing, 14(19), 4975. https://doi.org/10.3390/rs14194975