Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons
Abstract
:1. Introduction
2. Method
3. Experiment Setup
4. Data Processing
5. Results
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Briatore, L.; Leschiutta, S. Evidence for the Earth gravitational shift by direct atomic-time-scale comparison. Nuovo Cim. B 1977, 37, 219–231. [Google Scholar] [CrossRef]
- Ray, J.; Senio, K. Geodetic techniques for time and frequency comparisons using GPS phase and code measurements. Metrologia 2005, 42, 215–232. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Shen, W.B. Geopotential difference determination using optic-atomic clocks via coaxial cable time transfer technique and a synthetic test. Geod. Geodyn. 2015, 6, 344–350. [Google Scholar] [CrossRef]
- Mai, E. Time, Atomic Clocks, and Relativistic Geodesy; Deutsche Geodätische Kommission, Reihe A, Theoretische Geodäsie, Heft Nr. 124, Verlag der Bayerischen Akademie der Wissenschaften: München, Germany, 2013. [Google Scholar]
- Flury, J. Relativistic geodesy. J. Phys. Conf. Ser. 2016, 723, 012051. [Google Scholar] [CrossRef]
- Hinkley, N.; Sherman, J.A.; Phillips, N.B.; Schioppo, M.; Lemke, N.D.; Beloy, K.; Pizzocaro, M.; Oates, C.W.; Ludlow, A.D. An atomic clock with 10−18 instability. Science 2013, 341, 1215–1218. [Google Scholar] [CrossRef]
- Nicholson, T.L.; Campbell, S.L.; Hutson, R.B.; Marti, G.E.; Bloom, B.J.; McNally, R.L.; Zhang, W.; Barrett, M.D.; Safronova, M.S.; Strouse, G.F.; et al. Systematic evaluation of an atomic clock at 2 × 10−18 total uncertainty. Nat. Commun. 2015, 6, 6896. [Google Scholar] [CrossRef] [PubMed]
- Ushijima, I.; Takamoto, M.; Das, M.; Ohkubo, T.; Katori, H. Cryogenic optical lattice clocks. Nat. Photonics 2015, 9, 185–189. [Google Scholar] [CrossRef]
- Huntemann, N.; Sanner, C.; Lipphardt, B.; Tamm, C.; Peik, E. Single-ion atomic clock with 3 × 10−18 systematic uncertainty. Phys. Rev. Lett. 2016, 116, 063001. [Google Scholar] [CrossRef]
- Oelker, E.; Hutson, R.; Kennedy, C.; Sonderhouse, L.; Bothwell, T.; Goban, A.; Kedar, D.; Sanner, C.; Robinson, J.M.; Marti, G.E.; et al. Demonstration of 4.8 × 10−17 stability at 1 s for two independent optical clocks. Nat. Photonics 2019, 13, 714–719. [Google Scholar] [CrossRef]
- Shen, W.B.; Ning, J.S. The application of GPS technique in determining the Earth’s potential field. J. Glob. Position. Syst. 2005, 4, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Delva, P.; Hees, A.; Bertone, S.; Richard, E.; Wolf, P. Test of the gravitational redshift with stable clocks in eccentric orbits: Application to Galileo satellites 5 and 6. Class. Quantum Gravity 2015, 32, 232003. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Shen, W.B.; Zhang, S.X. Formulation of geopotential difference determination using optical-atomic clocks onboard satellites and on ground based on Doppler cancellation system. Geophys. J. Int. 2016, 206, 1162–1168. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Shen, W.B.; Zhang, S.X. Determination of gravitational potential at ground using optical-atomic clocks on board satellites and on ground stations and relevant simulation experiments. Surv. Geophys. 2017, 38, 757–780. [Google Scholar] [CrossRef]
- Shen, W.B.; Sun, X.; Cai, C.H.; Wu, K.C.; Shen, Z.Y. Geopotential determination based on a direct clock comparison using two-way satellite time and frequency transfer. Terr. Atmos. Ocean. Sci. 2019, 30, 21–31. [Google Scholar] [CrossRef]
- Shen, W.B.; Wu, K.C.; Sun, X.; Cai, C.H.; Shen, Z.Y. Preliminary experimental results of determining the geopotential difference between two synchronized portable hydrogen clocks at different locations. arXiv 2020, arXiv:2008.06271. [Google Scholar] [CrossRef]
- Wu, K.C.; Shen, Z.Y.; Shen, W.B.; Sun, X.; Cai, C.H.; Wu, Y.F. A preliminary experiment of determining the geopotential difference using two hydrogen atomic clocks and TWSTFT technique. J. Geod. Geodyn. 2020, 11, 229–241. [Google Scholar] [CrossRef]
- Śliwczyński, Ł.; Krehlik, P.; Czubla, A.; Buczek, Ł.; Lipiński, M. Dissemination of time and RF frequency via a stabilized fibre optic link over a distance of 420 km. Metrologia 2013, 50, 133–145. [Google Scholar] [CrossRef]
- Predehl, K.; Grosche, G.; Raupach, S.M.F.; Droste, S.; Terra, O.; Alnis, J.; Legero, T.; Hänsch, T.W.; Udem, T.; Holzwarth, R.; et al. A 920-kilometer optical fiber link for frequency metrology at the 19th decimal place. Science 2012, 336, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.B. Orthometric height determination based upon optical clocks and fiber frequency transfer technique. In Proceedings of the Saudi International Electronics, Communications and Photonics Conference, Riyadh, Saudi Arabia, 27–30 April 2013; pp. 1–4. [Google Scholar]
- Shen, W.B. Orthometric height determination using optical clocks. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–12 April 2013; p. 5214. [Google Scholar]
- Takano, T.; Takamoto, M.; Ushijima, I.; Ohmae, N.; Akatsuka, T.; Yamaguchi, A.; Kuroishi, Y.; Munekane, H.; Miyahara, B.; Katori, H. Geopotential measurements with synchronously linked optical lattice clocks. Nat. Photonics 2016, 10, 662–666. [Google Scholar] [CrossRef]
- Lisdat, C.; Grosche, G.; Quintin, N.; Shi, C.; Raupach, S.; Grebing, C.; Nicolodi, D.; Stefani, F.; Al-Masoudi, A.; Dörscher, S.; et al. A clock network for geodesy and fundamental science. Nat. Commun. 2016, 7, 12443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grotti, J.; Koller, S.; Vogt, S.; Häfner, S.; Sterr, U.; Lisdat, C.; Denker, H.; Voigt, C.; Timmen, L.; Rolland, A.; et al. Geodesy and metrology with a transportable optical clock. Nat. Phys. 2018, 14, 437–441. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Shen, W.B.; Peng, Z.; Liu, T.; Zhang, S.G.; Chao, D.B. Formulation of determining the gravity potential difference using ultra-high precise clocks via optical fiber frequency transfer technique. J. Earth Sci. 2019, 30, 422–428. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, H.Q.; Zhang, B.L.; Hao, Y.M.; Guan, H.; Zeng, M.Y.; Chen, Q.F.; Lin, Y.G.; Wang, Y.Z.; Cao, S.Y.; et al. Geopotential measurement with a robust, transportable Ca+ optical clock. Phys. Rev. A 2020, 102, 050802. [Google Scholar] [CrossRef]
- Takamoto, M.; Ushijima, I.; Ohmae, N.; Yahagi, T.; Kokado, K.; Shinkai, H.; Katori, H. Test of general relativity by a pair of transportable optical lattice clocks. Nat. Photonics 2020, 14, 411–415. [Google Scholar] [CrossRef]
- Hoang, A.T.; Shen, Z.Y.; Shen, W.B.; Cai, C.H.; Xu, W.; Ning, A.; Wu, Y.F. Determination of the orthometric height difference based on optical fiber frequency transfer technique. J. Geod. Geodyn. 2021, 12, 405–412. [Google Scholar] [CrossRef]
- Hofmann-Wellenhof, B.; Moritz, H. Physical Geodesy; Springer: Vienna, Austria, 2005. [Google Scholar]
- Wu, Z.H.; Huang, N.E. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Huang, N.E.; Wu, Z.H. A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Rev. Geophys. 2008, 46, RG2006. [Google Scholar] [CrossRef]
- Reichmann, W.J. Use and Abuse of Statistics; Methuen Co. Ltd.: London, UK, 1961; Reprinted 1964–1970 by Pelican Appendix 8. [Google Scholar]
- Hassani, H.; Ghodsi, M.; Howell, G. A note on standard deviation and standard error. Teach. Math. Its Appl. Int. J. IMA 2010, 29, 108–112. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef]
- Allan, D.W. Time and frequency (Time-Domain) characterization, estimation, and prediction of precision clocks and oscillators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1987, 34, 647–654. [Google Scholar] [CrossRef]
- Banerjee, P.; Chatterjee, A.; Suman, A. Determination of Allan deviation of Cesium atomic clock for lower averaging time. Indian J. Pure Appl. Phys. 2007, 45, 945–949. [Google Scholar]
- Gasi, S. A new ensemble empirical mode decomposition (EEMD) denoising method for seismic signals. Energy Procedia 2016, 97, 84–91. [Google Scholar] [CrossRef]
- Cai, C.H.; Shen, W.B.; Shen, Z.Y.; Xu, W. Geopotential determination based on precise point positioning time comparison: A case study using simulated observation. IEEE Access. 2020, 8, 204283–204294. [Google Scholar] [CrossRef]
- Xu, W.; Shen, W.B.; Cai, C.H.; Li, L.H.; Wang, L.; Shen, Z.Y. Modeling and performance evaluation of precise positioning and time-frequency transfer with Galileo five-frequency observations. Remote Sens. 2021, 13, 2972. [Google Scholar] [CrossRef]
- Dix-Matthews, B.P.; Schediwy, S.W.; Gozzard, D.R.; Savalle, E.; Esnault, F.-X.; Lévèque, T.; Gravestock, C.; D’Mello, D.; Karpathakis, S.; Tobar, M.; et al. Point-to-point stabilized optical frequency transfer with active optics. Nat. Commun. 2021, 12, 515. [Google Scholar] [CrossRef]
- Bodine, M.I.; Deschênes, J.-D.; Khader, I.H.; Swann, W.C.; Leopardi, H.; Beloy, K.; Bothwell, T.; Brewer, S.M.; Bromley, S.L.; Chen, J.-S.; et al. Optical atomic clock comparison through turbulent air. Phys. Rev. Res. 2020, 2, 033395. [Google Scholar] [CrossRef]
Frequency Used Being (Hz) | Gravity Frequency Shift after Calibration (Hz) | g (m∙s−2) | Geopotential Difference (m2∙s−2) | Height Difference (m) |
---|---|---|---|---|
411,042,129,776,400.41 | 0.194364 | 9.80665 | 42.50 ± 1.03 | 4.33 (11) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoang, A.T.; Shen, Z.; Wu, K.; Ning, A.; Shen, W. Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons. Remote Sens. 2022, 14, 4850. https://doi.org/10.3390/rs14194850
Hoang AT, Shen Z, Wu K, Ning A, Shen W. Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons. Remote Sensing. 2022; 14(19):4850. https://doi.org/10.3390/rs14194850
Chicago/Turabian StyleHoang, Anh The, Ziyu Shen, Kuangchao Wu, An Ning, and Wenbin Shen. 2022. "Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons" Remote Sensing 14, no. 19: 4850. https://doi.org/10.3390/rs14194850
APA StyleHoang, A. T., Shen, Z., Wu, K., Ning, A., & Shen, W. (2022). Test of Determining Geopotential Difference between Two Sites at Wuhan Based on Optical Clocks’ Frequency Comparisons. Remote Sensing, 14(19), 4850. https://doi.org/10.3390/rs14194850