Analysis of Local Site Effects in the Međimurje Region (North Croatia) and Its Consequences Related to Historical and Recent Earthquakes
Abstract
:1. Introduction
2. Geological and Tectonic Features of the Međimurje Region
3. Seismicity of the Međimurje Region
4. Observed Damage from M5.5 Zagreb and M6.2 Petrinja 2020 Earthquakes
5. Microtremor Measurements and HVSR Analysis
6. Discussion
7. Conclusions
- Strong amplification due to variable soil-structure and surface-to bedrock depths;
- Resonance effects between local site and certain buildings (mostly older churches);
- Increased intensity due to influence of water-saturated sands and gravel;
- Nonlinearity effects due to strong shaking on soft soils;
- Liquefaction effects from strong and nearby earthquakes;
- Localized amplification and directional ground motion variations oriented along local topographical features;
- Possible susceptibility to seismically induced landslide;
- Possible influence of shallow near-fault characteristics.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Herak, M.; Allegretti, I.; Herak, D.; Ivančić, I.; Kuk, V.; Marić, K.; Markušić, S.; Sović, I. Seismic Hazard Map of Croatia for a Return Period of 475-years. 2011. Available online: http://seizkarta.gfz.hr/hazmap/ (accessed on 12 July 2022).
- Herak, D.; Herak, M.; Tomljenović, B. Seismicity and earthquake focal mechanisms in North-Western Croatia. Tectonophysics 2009, 465, 212–220. [Google Scholar] [CrossRef]
- Herak, D.; Živčić, M.; Vrkić, I.; Herak, M. The Međimurje (Croatia) earthquake of 1738. Seismol. Res. Lett. 2020, 91, 1042–1056. [Google Scholar] [CrossRef]
- Cvijanović, D. Strong earthquakes in SR Croatia (≥ VI°MCS) (In Croatian Jači potresi ≥ VI°MCS u SR Hrvatskoj). Geološki Vjesn. 1966, 19, 139–167. i Radovi Geofizičkog zavoda u Zagrebu III/17, 28 pp (In Croatian) [Google Scholar]
- Herak, M.; Herak, D.; Markušić, S. Revision of the earthquake catalogue and seismicity of Croatia, 1908–1992. Terra Nova 1996, 8, 86–94. [Google Scholar] [CrossRef]
- Markušić, S.; Stanko, D.; Korbar, T.; Belić, N.; Penava, D.; Kordić, B. The Zagreb (Croatia) M5.5 Earthquake on 22 March 2020. Geosciences 2020, 10, 252. [Google Scholar] [CrossRef]
- Markušić, S.; Stanko, D.; Penava, D.; Ivančić, I.; Bjelotomić Oršulić, O.; Korbar, T.; Sarhosis, V. Destructive M6.2 Petrinja Earthquake (Croatia) in 2020—Preliminary Multidisciplinary Research. Remote Sens. 2021, 13, 1095. [Google Scholar] [CrossRef]
- Baize, S.; Amoroso, S.; Belić, N.; Benedetti, L.; Boncio, P.; Budić, M.; Cinti, F.R.; Henriquet, M.; Rupnik, P.J.; Kordić, B.; et al. Environmental effects and seismogenic source characterization of the December 2020 earthquake sequence near Petrinja, Croatia. Geophys. J. Int. 2022, 230, 1394–1418. [Google Scholar] [CrossRef]
- Panzera, F.; Lombardo, G.; D’Amico, S.; Galea, P. Speedy Techniques to Evaluate Seismic Site Effects in Particular Geomorphologic Conditions: Faults, Cavities, Landslides and Topographic Irregularities. In Engineering Seismology, Geotechnical and Structural Earthquake Engineering, 1st ed.; D’Amico, S., Ed.; Intech Open: London, UK, 2013; Chapter 5; pp. 102–138. [Google Scholar]
- Stur, D. Das Erdbeben von Klana im Jahre 1870. In Jahrbuch Der Kaiserlich-Königlichen Geologischen Reichsanstalt; XXI band: Vienna, Austria, 1871; Volume 11, pp. 231–264. (In German) [Google Scholar]
- Bard, P.-Y.; Campillo, M.; Chávez-Garcia, F.J.; Sánchez-Sesma, F. The Mexico Earthquake of September 19, 1985—A Theoretical Investigation of Large- and Small-Scale Amplification Effects in the Mexico City Valley. Earthq. Spectra 1988, 4, 609–633. [Google Scholar] [CrossRef]
- Aki, K. Local site effects on weak and strong ground motion. Tectonophysics 1993, 218, 93–111. [Google Scholar] [CrossRef]
- Seed, R.; Dickenson, S.; Idriss, I. Principal Geotechnical Aspects of the 1989 Loma Prieta Earthquake. Soils Found. 1991, 31, 1–26. [Google Scholar] [CrossRef]
- Herak, M.; Allegretti, I.; Herak, D.; Kuk, K.; Kuk, V.; Marić, K.; Markušić, S.; Stipčević, J. HVSR of ambient noise in Ston (Croatia)—comparison with theoretical spectra and with the damage distribution after the 1996 Ston-Slano earthquake. Bull. Earthq. Eng. 2010, 8, 483–499. [Google Scholar] [CrossRef]
- Gosar, A. Microtremor HVSR study for assessing site effects in the Bovec basin (NW Slovenia) related to 1998 Mw5.6 and 2004 Mw5.2 earthquakes. Eng. Geol 2007, 91, 178–193. [Google Scholar] [CrossRef]
- Stanko, D.; Markušić, S.; Gazdek, M.; Sanković, V.; Slukan, I.; Ivančić, I. Assessment of the seismic site amplification in the city of Ivanec (NW part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. Geosciences 2019, 9, 312. [Google Scholar] [CrossRef]
- Nakamura, Y. A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Q. Rep. Railw. Tech. Res. Inst. 1989, 30, 25–30. [Google Scholar]
- Horváth, F.; Musitz, B.; Balázs, A.; Végh, A.; Uhrin, A.; Nádor, A.; Koroknai, B.; Pap, N.; Tóth, T.; Wórum, G. Evolution of the Pannonian basin and its geothermal resources. Geothermics 2015, 53, 328–352. [Google Scholar] [CrossRef]
- Brlek, M.; Kutterolf, S.; Gaynor, S.; Kuiper, K.; Belak, M.; Brčić, V.; Holcová, K.; Wang, K.L.; Bakrač, K.; Hajek-Tadesse, V.; et al. Miocene syn-rift evolution of the North Croatian Basin (Carpathian–Pannonian Region): New constraints from Mts. Kalnik and Požeška gora volcaniclastic record with regional implications. Int. J. Earth Sci. 2020, 109, 2775–2800. [Google Scholar] [CrossRef]
- Pavelić, D.; Kovačić, M. Sedimentology and stratigraphy of the Neogene rift-type North Croatian Basin (Pannonian Basin System, Croatia): A review. In Marine and Petroleum Geology; Elsevier Ltd.: Amsterdam, The Netherlands, 2018; Volume 91, pp. 455–469. [Google Scholar] [CrossRef]
- Mandic, O.; de Leeuw, A.; Bulić, J.; Kuiper, K.F.; Krijgsman, W.; Jurišić-Polšak, Z. Paleogeographic evolution of the Southern Pannonian Basin: 40Ar/ 39Ar age constraints on the Miocene continental series of Northern Croatia. Int. J. Earth Sci. 2012, 101, 1033–1046. [Google Scholar] [CrossRef]
- Avanić, R.; Pavelić, D.; Pécskay, Z.; Miknić, M.; Tibljaš, D.; Wacha, L. Tidal deposits in the early miocene central paratethys: The vučji jarek and Čemernica members of the macelj formation (NW Croatia). Geol. Croat. 2021, 74, 41–56. [Google Scholar] [CrossRef]
- Sant, K.; Palcu, D.; Mandic, O.; Krijgsman, W. Changing seas in the Early–Middle Miocene of Central Europe: A Mediterranean approach to Paratethyan stratigraphy. Terra Nova 2017, 29, 273–281. [Google Scholar] [CrossRef]
- Kováč, M.; Hudáčková, N.; Halásová, E.; Kováčová, M.; Holcová, K.; Oszczypko-Clowes, M.; Báldi, K.; Less, G.; Nagymarosy, A.; Ruman, A.; et al. The Central Paratethys palaeoceanography: A water circulation model based on microfossil proxies, climate, and changes of depositional environment. Acta Geol. Slovaca 2017, 9, 75–114. [Google Scholar]
- Kováč, M.; Halásová, E.; Hudáčková, N.; Holcová, K.; Hyžný, M.; Jamrich, M.; Ruman, A. Towards better correlation of the Central Paratethys regional time scale with the standard geological time scale of the Miocene Epoch. Geol. Carpathica 2018, 69, 283–300. [Google Scholar] [CrossRef]
- Schmid, S.M.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic orogenic system: Correlation and evolution of tectonic units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Atanackov, J.; Jamšek Rupnik, P.; Jež, J.; Celarc, B.; Novak, M.; Milanič, B.; Markelj, A.; Bavec, M.; Kastelic, V. Database of Active Faults in Slovenia: Compiling a New Active Fault Database at the Junction Between the Alps, the Dinarides and the Pannonian Basin Tectonic Domains. Front. Earth Sci. 2021, 9, 604388. [Google Scholar] [CrossRef]
- Tomljenović, B.; Csontos, L. Neogene-quaternary structures in the border zone between Alps, Dinarides and Pannonian Basin (Hrvatsko zgorje and Karlovac basins, Croatia). Int. J. Earth Sci. 2001, 90, 560–578. [Google Scholar] [CrossRef]
- GKRH. Geološka karta Republike Hrvatske (Geological Map of the Republic of Croatia) scale 1:300.000; Hrvatski Geološki Institut (Croatian Geological Survey): Zagreb, Croatia, 2009; 1 sheet. [Google Scholar]
- Mioč, P.; Marković, S. Basic Geological Map of the Republic of Croatia and the Republic of Slovenia 1:100 000, Sheet Čakovec; Institut za Geološka Istraživanja, Zagreb i Inštitut za Geologijo, Geotehniko in Geofiziko: Ljubljana, Slovenia, 1998. [Google Scholar]
- Marković, S.; Mioč, P. Basic Geological Map of the Socialist Federative Republic of Yugoslavia 1:100 000, Sheet Nagykanizsa; Federal Geological Institute: Belgrade, Serbia, 1988. [Google Scholar]
- Rman, N.; Kun, E.; Samardžić, N.; Šram, D.; Atanackov, J.; Markič, M.; Lapanje, A.; Rajver, D.; Selmeczi, I.S.; Maros, G.; et al. A Joint Report on Geomanifestations in the Pannonian basin, Deliverable 4.2 of the GeoConnect3D Horizon 2020 Project. 2021. Available online: https://repository.europe-geology.eu/egdidocs/geoconnect3d/geoconnect3d_d42_joint+report+on+geomanifestation.pdf (accessed on 12 July 2022).
- Mioč, P.; Marković, S. Basic Geological Map of the Republic of Croatia and the Republic of Slovenia 1:100 000, Sheet Čakovec, Explanatory Notes; Institut za Geološka Istraživanja, Zagreb i Inštitut za Geologijo, Geotehniko in Geofiziko: Ljubljana, Slovenia, 1998. [Google Scholar]
- Marković, S.; Mioč, P. Basic Geological Map of the Socialist Federative Republic of Yugoslavia 1:100 000, Sheet Nagykanizsa, Explanatory Notes; Federal Geological Institute: Belgrade, Serbia, 1989. [Google Scholar]
- Matoš, B.; Tomljenović, B.; Trenc, N. Identification of tectonically active areas using DEM: A quantitative morphometric analysis of Mt. Medvednica, NW Croatia. Geol. Q. 2013, 58, 51–70. [Google Scholar] [CrossRef]
- Ivančić, I.; Herak, D.; Markušić, S.; Sović, I.; Herak, M. Seismicity of Croatia in the period 2002–2005. Geofizika 2006, 23, 87–103. [Google Scholar]
- Kišpatić, M. Potresi u Hrvatskoj; knj. 107; Rad JAZU: Zagreb, Croatia, 1891; pp. 81–164. (In Croatian) [Google Scholar]
- Torbar, J. Report on the Zagreb Earthquake of November 9, 1880; JAZU: Zagreb, Croatia, 1882; pp. 1–144. (In Croatian) [Google Scholar]
- Herak, M.; Herak, D.; Živčić, M.; Vrkić, I. Earthquakes of 1838 and 1839 in the Slovene Hills (Slovenia)—Međimurje (Croatia) area. Geofizika 2021, 38, 37–59. [Google Scholar] [CrossRef]
- Sovic, I.; Sariri, K. Explaining anisotropic macroseismic fields in terms of fault zone attenuation—A simple model. Tectonophysics 2016, 680, 113–121. [Google Scholar] [CrossRef]
- Bottari, A.; Federico, B.; Lo Giudice, E. The correlation between the macroseismic attenuation trend and the geo-structural framework; The Calabro-peloritan Arc an example. Tectonophysics 1984, 108, 33–49. [Google Scholar] [CrossRef]
- Michailov, D.; Glavcheva, R.; Dineva, S.; Elenkov, S. Influence of Local Geological Conditions on the Macroseismic Effects in the Town of Strazhitz. Nat. Hazards 1990, 3, 153–160. [Google Scholar] [CrossRef]
- Shebalin, N.V.; Karnik, V.; Hadzievski, D. Atlas of isoseismal maps, UNPD-UNESCO survey of the seismicity of the Balkan region. In Catalogue of Earthquakes; Unesco: Skopje, Republic of Macedonia, 1974; Part III. [Google Scholar]
- Markušić, S.; Stanko, D.; Penava, D.; Trajber, D.; Šalić, R. Preliminary Observations on Historical Castle Trakošćan (Croatia) Performance under Recent ML ≥ 5.5 Earthquakes. Geosciences 2021, 11, 461. [Google Scholar] [CrossRef]
- D’Amico, V.; Mucciarelli, M. Validation through HVSR measurements of a method for the quick detection of site amplification effects from intensity data: An application to a seismic area in Northern Italy. Soil Dyn. Earthq. Eng. 2002, 22, 475–483. [Google Scholar] [CrossRef]
- Molnar, S.; Onwuemeka, J.; Adhikari, S.R. Rapid Post-Earthquake Microtremor Measurements for Site Amplification and Shear Wave Velocity Profiling in Kathmandu, Nepal. Earthq. Spectra 2017, 33 (Suppl. S1), 55–72. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Luo, Y.; Wang, Y.; Wasovski, J. Using ambient noise to characterise seismic slope response: The case of Qiaozhuang peri-urban hillslopes (Sichuan, China). Eng. Geol. 2018, 246, 374–390. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Muscillo, S.; Wasowski, J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview. Eng. Geol. 2014, 182, 182–200. [Google Scholar] [CrossRef]
- Del Gaudio, V.; Coccia, S.; Wasowski, J.; Gallipoli, M.R.; Mucciarelli, M. Detection of directivity in seismic site response from microtremor spectral analysis. Nat. Hazards Earth Syst. Sci. 2008, 8, 751–762. [Google Scholar] [CrossRef]
- Bard, P.; Duval, A.; Koehler, A.; Rao, S. Guidelines for the Implementation of the H/V Spectral Ratio Technique on Ambient Vibrations Measurements, Processing and Interpretation. SESAME H/V User Guidelines. 2004, p. 62. Available online: http://sesame.geopsy.org/Papers/HV_User_Guidelines.pdf (accessed on 12 July 2022).
- Stanko, D.; Markušić, S. An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling. Nat. Hazards 2020, 103, 3715–3743. [Google Scholar] [CrossRef]
- Burjanek, J.; Edwards, B.; Fäh, D. Empirical evidence of local seismic effects at sites with pronounced topography: A systematic approach. Geophys. J. Int. 2014, 197, 608–619. [Google Scholar] [CrossRef]
- Leyton, F.; Ruiz, S.; Sepúlveda, S.A.; Contreras, J.P.; Rebolledo, S.; Astroza, M. Microtremors’ HVSR and its correlation with surface geology and damage observed after the 2010 Maule earthquake (Mw 8.8) at Talca and Curico, Central Chile. Eng. Geol. 2013, 161, 26–33. [Google Scholar] [CrossRef]
- Paolucci, E.; Albarello, D.; D’Amico, S.; Lunedei, E.; Martelli, L.; Mucciarelli, M.; Pileggi, D. A large scale ambient vibration survey in the area damaged by May-June 2012 seismic sequence in Emilia Romagna, Italy. Bull. Earthq. Eng. 2015, 13, 3187–3206. [Google Scholar] [CrossRef]
- Kwak, D.; Ahn, J.-K.; Seo, H.; Kang, S.; Kim, B. Single-path ground motion amplifications during the 2020 Haenam, South Korea, swarm. Bull. Earthq. Eng. 2022, 20, 4937–4959. [Google Scholar] [CrossRef]
- Lopez, S.; D’Amato, M.; Ramos, L.; Laterza, M.; Lourenço, P.B. Simplified formulations for estimating the main frequencies of ancient masonry churches. Front. Built Environ. 2019, 5, 18. [Google Scholar] [CrossRef]
- Gosar, A. Determination of masonry building fundamental frequencies in five Slovenian towns microtremor excitation and implications for seismic risk assessment. Nat. Hazards 2012, 62, 1059–1079. [Google Scholar] [CrossRef]
- Stanko, D.; Markušić, S.; Strelec, S.; Gazdek, M. Seismic response and vulnerability of historical Trakošćan Castle, Croatia using HVSR method. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Brkić, Ž.; Larva, O.; Tamara, M.; Dolić, M. Resursna Osnova za Pitku i Geotermalnu Vodu u Međimurskoj Županiji (Resource Base for Drinking and Geothermal Water in Međimurje County); Internal report No. 024/07; Hrvatski Geološki Institut (Croatian Geological Survey): Zagreb, Croatia, 2009; 53p. [Google Scholar]
- Beresnev, I.; Wen, K. Nonlinear Soil Response-A Reality? Bull. Seismol. Soc. Am. 1996, 86, 1964–1978. [Google Scholar] [CrossRef]
- Korbar, T.; Markušić, S.; Stanko, D.; Penava, D. Petrinja M6.2 earthquake in 2020 damaged also solid linear infrastructure: Are there similar active faults in Croatia? In Proceedings of the 1st Croatian Conference on Earthquake Engineering, 1CroCEE, Zagreb, Croatia, 22–24 March 2021; Lakušić, S., Atalić, J., Eds.; [Google Scholar] [CrossRef]
- EN 1998-1: 2004; CEN-Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Normalization: Brussels, Belgium, 2004; [Authority: The European Union per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC].
- Sandikkaya, M.A.; Akkar, S.; Bard, P.Y. A nonlinear site-amplification model for the next pan-European ground-motion prediction equations. Bull. Seismol. Soc. Am. 2013, 103, 19–32. [Google Scholar] [CrossRef]
- Causse, M.; Cornou, C.; Maufroy, E.; Grasso, J.-R.; Baillet, L.; El Haber, E. Exceptional ground motion during the shallow Mw 4.92019 Le Teil earthquake, France. Commun Earth Environ. 2021, 2, 14. [Google Scholar] [CrossRef]
- Panzera, F.; Bergamo, P.; Fäh, D. Reference soil condition for intensity prediction equations derived from seismological and geophysical data at seismic stations. J. Seismol. 2021, 25, 163–179. [Google Scholar] [CrossRef]
- Kouskouna, V.; Ganas, A.; Kleanthi, M.; Kassaras, I.; Sakellariou, N.; Sakkas, G.; Valkaniotis, S.; Manousou, E.; Bozionelos, G.; Tsironi, V.; et al. Evaluation of macroseismic intensity, strong ground motion pattern and fault model of the 19 July 2019 Mw5.1 earthquake west of Athens. J. Seismol. 2021, 25, 747–769. [Google Scholar] [CrossRef]
- D’Amico, S.; Picozzi, M.; Baliva, F.; Albarello, D. Ambient noise measurements for preliminary site-effects characterization in the Urban area of Florence, Italy. Bull. Seismol. Soc. Am. 2008, 98, 1373–1388. [Google Scholar] [CrossRef]
- Rezaei, S.; Shooshpasha, I.; Rezaei, H. Evaluation of landslides using ambient noise measurements (case study: Nargeschal landslide). Int. J. Geotech. Eng. 2020, 14, 409–419. [Google Scholar] [CrossRef]
- Anbazhagan, P.; Sheikh, M.N.; Parihar, A. Influence of Rock Depth on Seismic Site Classification for Shallow Bedrock Regions. Natural Hazards Review 2013, 14, 108–121. [Google Scholar] [CrossRef] [Green Version]
- Pehlivan, M.; Park, D.; Sadiq, S.; Hashash, Y.M.A. Seismic site response of shallow sites in moderate seismicity regions. In Proceedings of the 19th International Conference on Soil Mechanics and Geotechnical Engineering, ICSMGE 2017, Seoul, Korea, 17–22 September 2017; Available online: https://experts.illinois.edu/en/publications/seismic-site-response-of-shallow-sites-in-moderate-seismicity-reg (accessed on 12 July 2022).
- Uglešić, J.; Markušić, S.; Padovan, B.; Stanko, D. Semi-empirical estimation of the Zagreb ML5.5 earthquake (2020) ground motion amplification by 1-D equivalent linear site response analysis. Geofizika 2021, 38, 147–173. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stanko, D.; Sović, I.; Belić, N.; Markušić, S. Analysis of Local Site Effects in the Međimurje Region (North Croatia) and Its Consequences Related to Historical and Recent Earthquakes. Remote Sens. 2022, 14, 4831. https://doi.org/10.3390/rs14194831
Stanko D, Sović I, Belić N, Markušić S. Analysis of Local Site Effects in the Međimurje Region (North Croatia) and Its Consequences Related to Historical and Recent Earthquakes. Remote Sensing. 2022; 14(19):4831. https://doi.org/10.3390/rs14194831
Chicago/Turabian StyleStanko, Davor, Ivica Sović, Nikola Belić, and Snježana Markušić. 2022. "Analysis of Local Site Effects in the Međimurje Region (North Croatia) and Its Consequences Related to Historical and Recent Earthquakes" Remote Sensing 14, no. 19: 4831. https://doi.org/10.3390/rs14194831
APA StyleStanko, D., Sović, I., Belić, N., & Markušić, S. (2022). Analysis of Local Site Effects in the Međimurje Region (North Croatia) and Its Consequences Related to Historical and Recent Earthquakes. Remote Sensing, 14(19), 4831. https://doi.org/10.3390/rs14194831