Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media
Abstract
:1. Introduction
2. Theory and Methods
2.1. Viscoelastic Wave Equation with Constant-Order DFLs
2.2. Separation of P- and S- Wavefields
2.3. Adaptive Stable Q-Compensation Scheme
2.4. Implementation of Adaptive Stable Q-ERTM
- (a)
- Forward propagating the source-wavefield.
- (b)
- Backward propagating the receiver-wavefield.
- (c)
- Applying the imaging condition.
3. Numerical Examples
3.1. Sample Sag Model
3.2. Marmousi Model
3.3. Apply to Field Data
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Du, Q.; Zhu, Y.; Ba, J. Polarity reversal correction for elastic reverse time migration. Geophysics 2012, 77, S31–S41. [Google Scholar] [CrossRef]
- Duan, Y.; Sava, P. Scalar imaging condition for elastic reverse time migration. Geophysics 2015, 80, S127–S136. [Google Scholar] [CrossRef]
- Nguyen, B.D.; McMechan, G.A. Five ways to avoid storing source wavefield snapshots in 2D elastic prestack reverse time migration. Geophysics 2015, 80, S1–S18. [Google Scholar] [CrossRef]
- Luo, J.; Wang, B.; Wu, R.S.; Gao, J. Elastic full waveform inversion with angle decomposition and wavefield decoupling. IEEE Trans. Geosci. Remote Sens. 2020, 59, 871–883. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Xu, S. Viscoelastic Wave Simulation with High Temporal Accuracy Using Frequency-Dependent Complex Velocity. Surv. Geophys. 2021, 42, 97–132. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J.; Cheng, Y.; Su, C.; Liang, H.; Zhu, J. 3-D Image-Domain Least-Squares Reverse Time Migration with L1 Norm Constraint and Total Variation Regularization. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5918714. [Google Scholar] [CrossRef]
- Huang, X.; Greenhalgh, S.; Han, L.; Liu, X. Generalized Effective Biot Theory and Seismic Wave Propagation in Anisotropic, Poroviscoelastic Media. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023590. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, X.; Xun, C. Multicomponent seismic noise attenuation with multivariate order statistic filters. J. Appl. Geophys. 2016, 133, 70–81. [Google Scholar] [CrossRef]
- Xiao, X.; Leaney, W.S. Local vertical seismic profiling (VSP) elastic reverse-time migration and migration resolution: Salt-flank imaging with transmitted P-to-S waves. Geophysics 2010, 75, S35–S49. [Google Scholar] [CrossRef]
- Li, Z.; Ma, X.; Fu, C.; Liang, G. Wavefield separation and polarity reversal correction in elastic reverse time migration. J. Appl. Geophys. 2016, 127, 56–67. [Google Scholar] [CrossRef]
- Fang, J.; Chen, H.; Zhou, H.; Zhang, Q.; Wang, L. Three-dimensional elastic full-waveform inversion using temporal fourth-order finite-difference approximation. IEEE Geosci. Remote. Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, J. Deep-learning full-waveform inversion using seismic migration images. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5901818. [Google Scholar] [CrossRef]
- Du, Q.; Guo, C.; Zhao, Q.; Gong, X.; Wang, C.; Li, X.Y. Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics 2017, 82, S111–S127. [Google Scholar] [CrossRef]
- Yan, R.; Xie, X.B. An angle-domain imaging condition for elastic reverse time migration and its application to angle gather extraction. Geophysics 2012, 77, S105–S115. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, W.; Chen, Y. Attenuating crosstalk noise of simultaneous-source least-squares reverse time migration with GPU-based excitation amplitude imaging condition. IEEE Trans. Geosci. Remote Sens. 2018, 57, 587–597. [Google Scholar] [CrossRef]
- Zhu, T.; Sun, J. Viscoelastic reverse time migration with attenuation compensation. Geophysics 2017, 82, S61–S73. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H. Viscoacoustic reverse time migration using a time-domain complex-valued wave equation viscoacoustic RTM. Geophysics 2018, 83, S505–S519. [Google Scholar] [CrossRef]
- Guo, P.; McMechan, G.A. Compensating Q effects in viscoelastic media by adjoint-based least-squares reverse time migration. Geophysics 2018, 83, S151–S172. [Google Scholar] [CrossRef]
- McDonal, F.; Angona, F.; Mills, R.; Sengbush, R.; Van Nostrand, R.; White, J. Attenuation of shear and compressional waves in Pierre shale. Geophysics 1958, 23, 421–439. [Google Scholar] [CrossRef]
- Liu, H.P.; Anderson, D.L.; Kanamori, H. Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. Int. 1976, 47, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Robertsson, J.O.A.; Blanch, J.O.; Symes, W.W. Viscoelastic finite-difference modeling. Geophysics 1994, 59, 1444–1456. [Google Scholar] [CrossRef]
- Savage, B.; Komatitsch, D.; Tromp, J. Effects of 3D attenuation on seismic wave amplitude and phase measurements. Bull. Seismol. Soc. Am. 2010, 100, 1241–1251. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Carcione, J.M.; Harris, J.M. Approximating constant-Q seismic propagation in the time domain. Geophys. Prospect. 2013, 61, 931–940. [Google Scholar] [CrossRef]
- Wang, N.; Zhou, H.; Chen, H.M.; Xia, M.M.; Wang, S.C.; Fang, J.W.; Sun, P.Y. A constant fractional-order viscoelastic wave equation and its numerical simulation scheme. Geophysics 2018, 83, T39–T48. [Google Scholar] [CrossRef]
- Wang, N.; Zhu, T.; Zhou, H.; Chen, H.; Zhao, X.; Tian, Y. Fractional Laplacians viscoacoustic wavefield modeling with k-space-based time-stepping error compensating scheme. Geophysics 2020, 85, T1–T13. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, T. Modeling frequency-independent Q viscoacoustic wave propagation in heterogeneous media. J. Geophys. Res. Solid Earth 2019, 124, 11568–11584. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Bai, T. Efficient modeling of wave propagation in a vertical transversely isotropic attenuative medium based on fractional Laplacian. Geophysics 2019, 84, T121–T131. [Google Scholar] [CrossRef]
- Zhu, T.Y.; Harris, J.M.; Biondi, B. Q-compensated reverse time migration. Geophysics 2014, 79, S77–S87. [Google Scholar] [CrossRef]
- Li, Q.Q.; Zhou, H.; Zhang, Q.C.; Chen, H.M.; Sheng, S.B. Efficient reverse time migration based on fractional Laplacian viscoacoustic wave equation. Geophys. J. Int. 2016, 204, 488–504. [Google Scholar] [CrossRef]
- Wang, Y.; Harris, J.M.; Bai, M.; Saad, O.M.; Yang, L.; Chen, Y. An explicit stabilization scheme for Q-compensated reverse time migration. Geophysics 2022, 87, F25–F40. [Google Scholar] [CrossRef]
- Mu, X.; Huang, J.; Li, Z.; Liu, Y.; Su, L.; Liu, J. Attenuation Compensation and Anisotropy Correction in Reverse Time Migration for Attenuating Tilted Transversely Isotropic Media. Surv. Geophys. 2022, 43, 737–773. [Google Scholar] [CrossRef]
- Xue, Z.; Sun, J.; Fomel, S.; Zhu, T. Accelerating full-waveform inversion with attenuation compensation. Geophysics 2018, 83, A13–A20. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, H.; Rao, Y. Source Wavefield Reconstruction in Fractional Laplacian Viscoacoustic Wave Equation-Based Full Waveform Inversion. IEEE Trans. Geosci. Remote Sens. 2021, 59, 6496–6509. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, H.; Li, X.; Ren, L.; Zhang, S. Estimating p wave velocity and attenuation structures using full waveform inversion based on a time domain complex-valued viscoacoustic wave equation: The method. J. Geophys. Res. Solid Earth 2020, 125, e2019JB019129. [Google Scholar] [CrossRef]
- Xing, G.; Zhu, T. Decoupled Fréchet kernels based on a fractional viscoacoustic wave equation. Geophysics 2022, 87, T61–T70. [Google Scholar] [CrossRef]
- Ammari, H.; Bretin, E.; Garnier, J.; Wahab, A. Time-reversal algorithms in viscoelastic media. Eur. J. Appl. Math. 2013, 24, 565–600. [Google Scholar] [CrossRef]
- Wang, Y. A stable and efficient approach of inverse Q filtering. Geophysics 2002, 67, 657–663. [Google Scholar] [CrossRef]
- Qu, Y.; Huang, J.; Li, Z.; Guan, Z.; Li, J. Attenuation compensation in anisotropic least-squares reverse time migration. Geophysics 2017, 82, S411–S423. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, H.; Wang, Y.; Chen, H.; Zhou, Z.; Sun, P.; Zhang, J. A stable approach for Q-compensated viscoelastic reverse time migration using excitation amplitude imaging condition. Geophysics 2018, 83, S459–S476. [Google Scholar] [CrossRef]
- Sun, J.Z.; Zhu, T.Y.; Fomel, S. Viscoacoustic modeling and imaging using low-rank approximation. Geophysics 2015, 80, A103–A108. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Gao, J. Attenuation compensation for wavefield-separation-based least-squares reverse time migration in viscoelastic media. Geophys. Prospect. 2022, 70, 280–317. [Google Scholar] [CrossRef]
- Mu, X.; Huang, J.; Yang, J.; Guo, X.; Guo, Y. Least-squares reverse time migration in TTI media using a pure qP-wave equation. Geophysics 2020, 85, S199–S216. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Zhao, X.; Zhang, Q.; Chen, Y. Q-compensated viscoelastic reverse time migration using mode-dependent adaptive stabilization scheme. Geophysics 2019, 84, S301–S315. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, H.; Zhao, X.; Zhang, Q.; Zhao, P.; Yu, X.; Chen, Y. CuQ-RTM: A CUDA-based code package for stable and efficient Q-compensated reverse time migration CUDA-based Q-RTM. Geophysics 2019, 84, F1–F15. [Google Scholar] [CrossRef]
- Wang, Y.F.; Zhou, H.; Chen, H.M.; Chen, Y.K. Adaptive stabilization for Q-compensated reverse time migration. Geophysics 2017, 83, S15–S32. [Google Scholar] [CrossRef]
- Wang, N.; Xing, G.; Zhu, T.; Zhou, H.; Shi, Y. Propagating seismic waves in VTI attenuating media using fractional viscoelastic wave equation. J. Geophys. Res. Solid Earth 2022, 27, e2021JB023280. [Google Scholar] [CrossRef]
- Dellinger, J.; Etgen, J. Wave-field separation in two-dimensional anisotropic media. Geophysics 1990, 55, 914–919. [Google Scholar] [CrossRef]
- Yan, J.; Sava, P. Isotropic angle-domain elastic reverse-time migration. Geophysics 2008, 73, S229–S239. [Google Scholar] [CrossRef]
- Zhang, Q.; McMechan, G.A. 2D and 3D elastic wavefield vector decomposition in the wavenumber domain for VTI media. Geophysics 2010, 75, D13–D26. [Google Scholar] [CrossRef]
- Wang, W.; McMechan, G.A.; Zhang, Q. Comparison of two algorithms for isotropic elastic P and S vector decomposition. Geophysics 2015, 80, T147–T160. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Shi, Y.; Zhou, H. Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media. Remote Sens. 2022, 14, 4782. https://doi.org/10.3390/rs14194782
Wang N, Shi Y, Zhou H. Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media. Remote Sensing. 2022; 14(19):4782. https://doi.org/10.3390/rs14194782
Chicago/Turabian StyleWang, Ning, Ying Shi, and Hui Zhou. 2022. "Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media" Remote Sensing 14, no. 19: 4782. https://doi.org/10.3390/rs14194782
APA StyleWang, N., Shi, Y., & Zhou, H. (2022). Accurately Stable Q-Compensated Reverse-Time Migration Scheme for Heterogeneous Viscoelastic Media. Remote Sensing, 14(19), 4782. https://doi.org/10.3390/rs14194782