Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Sources
2.3. Landscape Ecological Risk Index
2.4. Sen’s Solpe and Mann–Kendall Test
2.5. Spatial Analysis
2.6. Boosted Regression Tree Model
3. Results
3.1. LULC Changes
3.2. Spatiotemporal Pattern of Landscape Ecological Risk
3.3. Global Spatial Autocorrelation of LER
3.4. Local Spatial Autocorrelation of LER
3.5. Analysis of LER Impact Factors
4. Discussion
4.1. The Spatiotemporal Changes in LER
4.2. Analysis of Impact Factors
4.3. Policy Implications
4.4. Advantages, Limitations, and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, T. The Qinghai-Tibetan Plateau: How High Do Tibetans Live? High Alt. Med. Biol. 2001, 2, 489–499. [Google Scholar] [CrossRef]
- Sun, H.; Zheng, D.; Yao, T.; Zhang, Y. Protection and Construction of the National Ecological Security Shelter Zone on Tibetan Plateau. Acta Geogr. Sin. 2012, 67, 3–12. [Google Scholar]
- Hua, T.; Zhao, W.; Cherubini, F.; Hu, X.; Pereira, P. Sensitivity and Future Exposure of Ecosystem Services to Climate Change on the Tibetan Plateau of China. Landsc. Ecol. 2021, 36, 3451–3471. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.G.; Mosbrugger, V.; Zhang, F.; Ma, Y.; Luo, T.; Xu, B.; Yang, X.; Joswiak, D.R.; Wang, W.; et al. Third Pole Environment (TPE). Environ. Dev. 2012, 3, 52–64. [Google Scholar] [CrossRef]
- Piao, S.; Niu, B.; Zhu, J.; Zhang, X.; Wang, T.; Wang, S.; Liang, E. Responses and Feedback of the Tibetan Plateau’s Alpine Ecosystem to Climate Change. Chin. Sci. Bull. 2019, 64, 2842–2855. [Google Scholar] [CrossRef]
- Cui, X.; Graf, H.F. Recent Land Cover Changes on the Tibetan Plateau: A Review. Clim. Chang. 2009, 94, 47–61. [Google Scholar] [CrossRef]
- Dong, M.; Jiang, Y.; Zheng, C.; Zhang, D. Trends in the Thermal Growing Season throughout the Tibetan Plateau during 1960–2009. Agric. For. Meteorol. 2012, 166–167, 201–206. [Google Scholar] [CrossRef]
- Chen, D.; Xu, B.; Yao, T.; Guo, Z.; Cui, P.; Chen, F.; Zhang, R.; Zhang, X.; Zhang, Y.; Fan, J.; et al. Assessment of Past, Present and Future Environmental Changes on the Tibetan Plateau. Kexue Tongbao/Chin. Sci. Bull. 2015, 60, 3025–3035. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Cheng, S.; Zheng, D. Scientific Basis and the Strategy of Sustainable Development in Tibetan Plateau. Sci. Technol. Rev. 2017, 35, 108–114. [Google Scholar]
- Xia, M.; Jia, K.; Zhao, W.; Liu, S.; Wei, X.; Wang, B. Spatio-Temporal Changes of Ecological Vulnerability across the Qinghai-Tibetan Plateau. Ecol. Indic. 2021, 123, 107274. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Fan, J. Spatial Distribution of Soil Erosion Sensitivity on the Tibet Plateau. Pedosphere 2005, 15, 465–472. [Google Scholar]
- Wang, Z.; Li, J.; Liang, L. Ecological Risk in the Tibetan Plateau and Influencing Urbanization Factors. Environ. Chall. 2022, 6, 100445. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Y.; Wang, Z.; Li, L. Mapping Human Influence Intensity in the Tibetan Plateau for Conservation of Ecological Service Functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Xu, B.; Cao, J.; Hansen, J.; Yao, T.; Joswia, D.R.; Wang, N.; Wu, G.; Wang, M.; Zhao, H.; Yang, W.; et al. Black Soot and the Survival of Tibetan Glaciers. Proc. Natl. Acad. Sci. USA 2009, 106, 22114–22118. [Google Scholar] [CrossRef]
- Ge, J.; You, Q.; Zhang, Y. Effect of Tibetan Plateau Heating on Summer Extreme Precipitation in Eastern China. Atmos. Res. 2019, 218, 364–371. [Google Scholar] [CrossRef]
- Zhang, Y.; Ohata, T.; Kadota, T. Land-Surface Hydrological Processes in the Permafrost Region of the Eastern Tibetan Plateau. J. Hydrol. 2003, 283, 41–56. [Google Scholar] [CrossRef]
- Depietri, Y. The Social–Ecological Dimension of Vulnerability and Risk to Natural Hazards. Sustain. Sci. 2020, 15, 587–604. [Google Scholar] [CrossRef]
- Renn, O. Concepts of Risk: An Interdisciplinary Review Part 1: Disciplinary Risk Concepts. GAIA-Ecol. Perspect. Sci. Soc. 2008, 17, 50–66. [Google Scholar] [CrossRef]
- Peng, J.; Liu, Y.; Pan, Y.; Zhao, Z.; Song, Z.; Wang, Y. Study on the Correlation between Ecological Risk Due to Natural Disaster and Landscape Pattern-Process: Review and Prospect. Adv. Earth Sci. 2014, 29, 1186–1196. [Google Scholar]
- Lin, Y.; Hu, X.; Zheng, X.; Hou, X.; Zhang, Z.; Zhou, X.; Qiu, R.; Lin, J. Spatial Variations in the Relationships between Road Network and Landscape Ecological Risks in the Highest Forest Coverage Region of China. Ecol. Indic. 2019, 96, 392–403. [Google Scholar] [CrossRef]
- Levine, S.L.; Giddings, J.; Valenti, T.; Cobb, G.P.; Carley, D.S.; McConnell, L.L. Overcoming Challenges of Incorporating Higher Tier Data in Ecological Risk Assessments and Risk Management of Pesticides in the United States: Findings and Recommendations from the 2017 Workshop on Regulation and Innovation in Agriculture. Integr. Environ. Assess. Manag. 2019, 15, 714–725. [Google Scholar] [CrossRef]
- Peng, J.; Dang, W.; Liu, Y.; Zong, M.; Hu, X. Review on Landscape Ecological Risk Assessment. Dili Xuebao/Acta Geogr. Sin. 2015, 70, 664–677. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, J.; Lan, Y.; Zhou, G.; You, H.; Han, X.; Wang, Y.; Shi, X. Landscape Pattern and Ecological Risk Assessment in Guangxi Based on Land Use Change. Int. J. Environ. Res. Public Health 2022, 19, 1595. [Google Scholar] [CrossRef]
- Jin, X.; Jin, Y.; Mao, X. Ecological Risk Assessment of Cities on the Tibetan Plateau Based on Land Use/Land Cover Changes–Case Study of Delingha City. Ecol. Indic. 2019, 101, 185–191. [Google Scholar] [CrossRef]
- Xie, H.; Wen, J.; Chen, Q.; Wu, Q. Evaluating the Landscape Ecological Risk Based on GIS: A Case-study in the Poyang Lake Region of China. Land Degrad. Dev. 2021, 32, 2762–2774. [Google Scholar] [CrossRef]
- Wang, B.; Ding, M.; Li, S.; Liu, L.; Ai, J. Assessment of Landscape Ecological Risk for a Cross-Border Basin: A Case Study of the Koshi River Basin, Central Himalayas. Ecol. Indic. 2020, 117, 106621. [Google Scholar] [CrossRef]
- Hou, M.; Ge, J.; Gao, J.; Meng, B.; Li, Y.; Yin, J.; Liu, J.; Feng, Q.; Liang, T. Ecological Risk Assessment and Impact Factor Analysis of Alpine Wetland Ecosystem Based on LUCC and Boosted Regression Tree on the Zoige Plateau, China. Remote Sens. 2020, 12, 368. [Google Scholar] [CrossRef]
- Fu, B. The Integrated Studies of Geography: Coupling of Patterns and Processes. Acta Geogr. Sin. 2014, 69, 1052–1059. [Google Scholar] [CrossRef]
- Leuven, R.S.E.W.; Poudevigne, I. Riverine Landscape Dynamics and Ecological Risk Assessment. Freshw. Biol. 2002, 47, 845–865. [Google Scholar] [CrossRef]
- Xue, L.; Zhu, B.; Wu, Y.; Wei, G.; Liao, S.; Yang, C.; Wang, J.; Zhang, H.; Ren, L.; Han, Q. Dynamic Projection of Ecological Risk in the Manas River Basin Based on Terrain Gradients. Sci. Total Environ. 2019, 653, 283–293. [Google Scholar] [CrossRef]
- Cui, L.; Zhao, Y.; Liu, J.; Han, L.; Ao, Y.; Yin, S. Landscape Ecological Risk Assessment in Qinling Mountain. Geol. J. 2018, 53, 342–351. [Google Scholar] [CrossRef]
- Yang, H.; Chen, W.; Chen, X. Regional Ecological Network Planning for Biodiversity Conservation: A Case Study of China’s Poyang Lake Eco-Economic Region. Pol. J. Environ. Stud. 2017, 26, 1825–1833. [Google Scholar] [CrossRef]
- Zhao, Z.; Wu, X.; Zhang, Y.; Gao, J. Assessment of Changes in the Value of Ecosystem Services in the Koshi River Basin, Central High Himalayas Based on Land Cover Changes and the CA-Markov Model. J. Resour. Ecol. 2017, 8, 67–76. [Google Scholar] [CrossRef]
- Wei, H.; Xu, L.; Li, X.; Li, J. Landscape Ecological Risk Assessment and Its Spatiotemporal Changes of the Boston Lake Basin. Environ. Sci. Technol. 2018, 41, 345–351. [Google Scholar] [CrossRef]
- Mikhailov, V.G.; Koryakov, A.G.; Mikhailov, G.S. Ecological Risk Management in Coal Mining and Processing. J. Min. Sci. 2015, 51, 930–936. [Google Scholar] [CrossRef]
- Chen, H.; Liu, J.; Cao, Y.; Li, S.; Ouyang, H. Ecological Risk Assessment of Regions Along the Roadside of the Qinghai-Tibet Highway and Railway Based on an Artificial Neural Network. Hum. Ecol. Risk Assess. Int. J. 2007, 13, 900–913. [Google Scholar] [CrossRef]
- Zhou, W.; Zeng, Y.; Chen, S.; Yan, Y. Ecological Risk Appraisal of Programming Infrastructure Construction in Tibet Plateau: A Case Study on Sannan Administrative Region. J. Nat. Disasters 2007, 16, 21–26. [Google Scholar]
- WANG, J.; BAI, W.; TIAN, G. Spatiotemporal Characteristics of Landscape Ecological Risks on the Tibetan Plateau. Resour. Sci. 2020, 42, 1739–1749. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Ma, H.; Wu, J. Review of Landscape Ecological Risk and an Assessment Framework Based on Ecological Services: ESRISK. Acta Geogr. Sin. 2018, 73, 843–855. [Google Scholar] [CrossRef]
- Li, W.; Wang, Y.; Xie, S.; Sun, R.; Cheng, X. Impacts of Landscape Multifunctionality Change on Landscape Ecological Risk in a Megacity, China: A Case Study of Beijing. Ecol. Indic. 2020, 117, 106681. [Google Scholar] [CrossRef]
- Ai, J.; Yu, K.; Zeng, Z.; Yang, L.; Liu, Y.; Liu, J. Assessing the Dynamic Landscape Ecological Risk and Its Driving Forces in an Island City Based on Optimal Spatial Scales: Haitan Island, China. Ecol. Indic. 2022, 137, 108771. [Google Scholar] [CrossRef]
- Li, L.; Zhou, X.; Yang, L.; Duan, J.; Zeng, Z. Spatio-Temporal Characteristics and Influencing Factors of Ecological Risk in China’s North–South Transition Zone. Sustainbility 2022, 14, 5464. [Google Scholar] [CrossRef]
- Mo, W.; Wang, Y.; Zhang, Y.; Zhuang, D. Impacts of Road Network Expansion on Landscape Ecological Risk in a Megacity, China: A Case Study of Beijing. Sci. Total Environ. 2017, 574, 1000–1011. [Google Scholar] [CrossRef]
- Zhao, Y.; Luo, L.; Wan, H.; Wu, Q.; Liu, C. Remote Sensing Monitoring and Analysis of Landscape Pattern in Bayanbulak Heritage Site for Nearly 30 Years. Natl. Remote Sens. Bull. 2021, 25, 2488–2506. [Google Scholar] [CrossRef]
- De’ath, G. Boosted Trees for Ecological Modeling and Prediction. Ecology 2007, 88, 243–251. [Google Scholar] [CrossRef]
- Main, A.R.; Michel, N.L.; Headley, J.V.; Peru, K.M.; Morrissey, C.A. Ecological and Landscape Drivers of Neonicotinoid Insecticide Detections and Concentrations in Canada’s Prairie Wetlands. Environ. Sci. Technol. 2015, 49, 8367–8376. [Google Scholar] [CrossRef]
- Zhang, W.; Du, Z.; Zhang, D.; Yu, S.; Hao, Y. Boosted Regression Tree Model-Based Assessment of the Impacts of Meteorological Drivers of Hand, Foot and Mouth Disease in Guangdong, China. Sci. Total Environ. 2016, 553, 366–371. [Google Scholar] [CrossRef]
- Solano-Villarreal, E.; Valdivia, W.; Pearcy, M.; Linard, C.; Pasapera-Gonzales, J.; Moreno-Gutierrez, D.; Lejeune, P.; Llanos-Cuentas, A.; Speybroeck, N.; Hayette, M.-P.; et al. Malaria Risk Assessment and Mapping Using Satellite Imagery and Boosted Regression Trees in the Peruvian Amazon. Sci. Rep. 2019, 9, 15173. [Google Scholar] [CrossRef]
- Li, C.; Liu, M.; Hu, Y.; Xu, Y.; Sun, F. Driving Forces Analysis of Urban Expansion Based on Boosted Regression Trees and Logistic Regression. Acta Ecol. Sin. 2014, 34, 727–737. [Google Scholar] [CrossRef]
- Ren, H.; Pan, X. Integration Dataset of Tibet Plateau Boundary; National Tibetan Plateau Data Center: Beijing, China, 2019. [Google Scholar]
- Zhang, Y.; Zheng, D.; Li, B. A Discussion on the Boundary and Area of the Tibetan Plateau in China. Geogr. Res. 2002, 21, 1–8. [Google Scholar]
- Yang, J.; Huang, X. The 30 m Annual Land Cover Dataset and Its Dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Wu, X.; Zheng, D.; Wang, Z.; Yan, J.; Liu, L.; Zhang, B.; Zhao, Z.; Bai, W.; et al. Spatial and Temporal Characteristics of Land Use and Cover Changes in the Tibetan Plateau. Chin. Sci. Bull. 2019, 64, 2865–2875. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Liu, Y.; Dong, Y.; Li, M.; An, Y.; Shi, F. Grazing Intensity and Human Activity Intensity Data Sets on the Qinghai-Tibetan Plateau during 1990–2015. Geosci. Data J. 2022, 9, 140–153. [Google Scholar] [CrossRef]
- Zhang, X.; Shi, P.; Luo, J. Landscape Ecological Risk Assessment of the Shiyang River Basin. In Proceedings of the International Conference on Geo-Informatics in Resource Management and Sustainable Ecosystem (GRMSE 2013), Wuhan, China, 8–10 November 2013; Bian, F., Xie, Y., Cui, X., Zeng, Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 98–106. [Google Scholar]
- Ju, H.; Niu, C.; Zhang, S.; Jiang, W.; Zhang, Z.; Zhang, X.; Yang, Z.; Cui, Y. Spatiotemporal Patterns and Modifiable Areal Unit Problems of the Landscape Ecological Risk in Coastal Areas: A Case Study of the Shandong Peninsula, China. J. Clean. Prod. 2021, 310, 127522. [Google Scholar] [CrossRef]
- Xie, H.; Wang, P.; Huang, H. Ecological Risk Assessment of Land Use Change in the Poyang Lake Eco-Economic Zone, China. Int. J. Environ. Res. Public Health 2013, 10, 328–346. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape Ecological Risk Assessment of Chinese Coastal Cities Based on Land Use Change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Zhao, C.; Chang, Y.; Liu, Y.; Zang, F. Spatial-Temporal Pattern Analysis of Landscape Ecological Risk Assessment Based on Land Use/Land Cover Change in Baishuijiang National Nature Reserve in Gansu Province, China. Ecol. Indic. 2021, 124, 107454. [Google Scholar] [CrossRef]
- Jin, G.; Li, Z.; Deng, X.; Yang, J.; Chen, D.; Li, W. An Analysis of Spatiotemporal Patterns in Chinese Agricultural Productivity between 2004 and 2014. Ecol. Indic. 2019, 105, 591–600. [Google Scholar] [CrossRef]
- Gong, J.; Cao, E.; Xie, Y.; Xu, C.; Li, H.; Yan, L. Integrating Ecosystem Services and Landscape Ecological Risk into Adaptive Management: Insights from a Western Mountain-Basin Area, China. J. Environ. Manag. 2021, 281, 111817. [Google Scholar] [CrossRef]
- Dale, V.H.; Kline, K.L. Issues in Using Landscape Indicators to Assess Land Changes. Ecol. Indic. 2013, 28, 91–99. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Fan, F. Mapping and Evaluation of Landscape Ecological Status Using Geographic Indices Extracted from Remote Sensing Imagery of the Pearl River Delta, China, between 1998 and 2008. Environ. Earth Sci. 2016, 75, 327. [Google Scholar] [CrossRef]
- Zhang, F.; Yushanjiang, A.; Wang, D. Ecological Risk Assessment Due to Land Use/Cover Changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 Based on Landscape Patterns and Spatial Statistics. Environ. Earth Sci. 2018, 77, 491. [Google Scholar] [CrossRef]
- Jiang, W.; Yuan, L.; Wang, W.; Cao, R.; Zhang, Y.; Shen, W. Spatio-Temporal Analysis of Vegetation Variation in the Yellow River Basin. Ecol. Indic. 2015, 51, 117–126. [Google Scholar] [CrossRef]
- Yang, L.; Jia, K.; Liang, S.; Liu, M.; Wei, X.; Yao, Y.; Zhang, X.; Liu, D. Spatio-Temporal Analysis and Uncertainty of Fractional Vegetation Cover Change over Northern China during 2001–2012 Based on Multiple Vegetation Data Sets. Remote Sens. 2018, 10, 549. [Google Scholar] [CrossRef]
- Guo, D.; Song, X.; Hu, R.; Cai, S.; Zhu, X.; Hao, Y. Grassland Type-Dependent Spatiotemporal Characteristics of Productivity in Inner Mongolia and Its Response to Climate Factors. Sci. Total Environ. 2021, 775, 145644. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Darand, M.; Dostkamyan, M.; Rehmani, M.I.A. Spatial Autocorrelation Analysis of Extreme Precipitation in Iran. Russ. Meteorol. Hydrol. 2017, 42, 415–424. [Google Scholar] [CrossRef]
- Overmars, K.P.; De Koning, G.H.J.; Veldkamp, A. Spatial Autocorrelation in Multi-Scale Land Use Models. Ecol. Modell. 2003, 164, 257–270. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Liu, S.; Hou, X.; Yin, Y.; Cheng, F.; Zhang, Y.; Dong, S. Research Progress on Landscape Ecological Networks. Acta Ecol. Sin. 2017, 37, 3947–3956. [Google Scholar] [CrossRef]
- Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial Autocorrelation and Autoregressive Models in Ecology. Ecol. Monogr. 2002, 72, 445–463. [Google Scholar] [CrossRef]
- Batlle, J.R.M.; Van Der Hoek, Y. Clusters of High Abundance of Plants Detected from Local Indicators of Spatial Association (LISA) in a Semi-Deciduous Tropical Forest. PLoS ONE 2018, 13, e0208780. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A Working Guide to Boosted Regression Trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Hu, Y.; Dai, Z.; Guldmann, J.M. Modeling the Impact of 2D/3D Urban Indicators on the Urban Heat Island over Different Seasons: A Boosted Regression Tree Approach. J. Environ. Manag. 2020, 266, 110424. [Google Scholar] [CrossRef]
- Zong, M.; Hu, Y.; Liu, M.; Li, C.; Wang, C.; Ping, X. Effects of Landscape Pattern Change on Water Yield and Nonpoint Source Pollution in the Hun-Taizi River Watershed, China. Int. J. Environ. Res. Public Health 2020, 17, 3060. [Google Scholar] [CrossRef]
- Vidal, L.; Antúnez, L.; Rodríguez-Haralambides, A.; Giménez, A.; Medina, K.; Boido, E.; Ares, G. Relationship between Astringency and Phenolic Composition of Commercial Uruguayan Tannat Wines: Application of Boosted Regression Trees. Food Res. Int. 2018, 112, 25–37. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, G.; Liu, F.; Lu, Y.; Yang, F.; Yang, F.; Yang, M.; Zhao, Y.; Li, D.C. Comparison of Boosted Regression Tree and Random Forest Models for Mapping Topsoil Organic Carbon Concentration in an Alpine Ecosystem. Ecol. Indic. 2016, 60, 870–878. [Google Scholar] [CrossRef]
- Hashimoto, S.; Nanko, K.; Tupek, B.; Lehtonen, A. Data-Mining Analysis of the Global Distribution of Soil Carbon in Observational Databases and Earth System Models. Geosci. Model Dev. 2017, 10, 1321–1337. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Jin, X.; Wan, L.; Gong, B. Regularity of Vegetation Coverage Changes in the Tibetan Plateau over the Last 21 Years. Adv. Earth Sci. 2007, 22, 33–40. [Google Scholar]
- Zhang, L.; Zhang, H.; Xu, E. Information Entropy and Elasticity Analysis of the Land Use Structure Change Influencing Eco-Environmental Quality in Qinghai-Tibet Plateau from 1990 to 2015. Environ. Sci. Pollut. Res. 2022, 29, 18348–18364. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.; Zhu, J.; Liu, Y.; Zu, J.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Diao, C.; Liu, Y.; Zhao, L.; Zhuo, G.; Zhang, Y. Regional-Scale Vegetation-Climate Interactions on the Qinghai-Tibet Plateau. Ecol. Inform. 2021, 65, 101413. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Shi, F.; An, Y.; Li, M.; Liu, Y. Spatio-Temporal Variations and Coupling of Human Activity Intensity and Ecosystem Services Based on the Four-Quadrant Model on the Qinghai-Tibet Plateau. Sci. Total Environ. 2020, 743, 140721. [Google Scholar] [CrossRef]
- Qiu, P.; Wu, N.; Luo, P.; Wang, Z.; Li, M. Analysis of Dynamics and Driving Factors of Wetland Landscape in Zoige, Eastern Qinghai-Tibetan Plateau. J. Mt. Sci. 2009, 6, 42–55. [Google Scholar] [CrossRef]
- Dong, S.; Shang, Z.; Gao, J.; Boone, R.B. Enhancing Sustainability of Grassland Ecosystems through Ecological Restoration and Grazing Management in an Era of Climate Change on Qinghai-Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 287, 106684. [Google Scholar] [CrossRef]
- Lu, X.; Kelsey, K.C.; Yan, Y.; Sun, J.; Wang, X.; Cheng, G.; Neff, J.C. Effects of Grazing on Ecosystem Structure and Function of Alpine Grasslands in Qinghai-Tibetan Plateau: A Synthesis. Ecosphere 2017, 8, e01656. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Wang, F.; Sun, Y.; Li, M.; Wang, Q.; Yu, L. Responses of Habitat Quality and Animal Biodiversity to Grazing Activities on the Qinghai-Tibet Plateau. Front. Ecol. Evol. 2021, 9, 681775. [Google Scholar] [CrossRef]
- Cao, Q.; Zhang, X.; Lei, D.; Guo, L.; Sun, X.; Kong, F.; Wu, J. Multi-Scenario Simulation of Landscape Ecological Risk Probability to Facilitate Different Decision-Making Preferences. J. Clean. Prod. 2019, 227, 325–335. [Google Scholar] [CrossRef]
- Munns, W.R.; Rea, A.W.; Suter, G.W.; Martin, L.; Blake-Hedges, L.; Crk, T.; Davis, C.; Ferreira, G.; Jordan, S.; Mahoney, M.; et al. Ecosystem Services as Assessment Endpoints for Ecological Risk Assessment. Integr. Environ. Assess. Manag. 2016, 12, 522–528. [Google Scholar] [CrossRef] [PubMed]
Clustering Types | Connotation |
---|---|
High–high (HH) | The area and its neighbors both have high LER |
High–low (HL) | The area has a high LER, whereas its neighbors have low LER |
Low–high (LH) | The area has a low LER, whereas its neighbors have high LER |
Low–low (LL) | The area and its neighbors both have low LER |
Not significant | No significant correlations |
LER | Area of Land in 2020 (in km2) | ||||||
---|---|---|---|---|---|---|---|
Extremely Low | Low | Medium | High | Extremely High | Total in 1990 | ||
Area of land in 1990 (in km2) | Extremely low | 248,426.64 | 1270.24 | 0.00 | 0.00 | 0.00 | 249,696.88 |
Low | 37,538.45 | 723,854.07 | 6806.19 | 0.00 | 0.00 | 768,198.71 | |
Medium | 0.00 | 161,070.77 | 572,295.60 | 8530.82 | 0.00 | 741,897.18 | |
High | 0.00 | 43.95 | 91,139.52 | 179,409.83 | 4974.98 | 275,568.28 | |
Extremely high | 0.00 | 0.00 | 258.38 | 77,347.76 | 465,568.68 | 543,174.82 | |
Total in 2020 | 285,965.09 | 886,239.02 | 670,499.69 | 265,288.51 | 470,543.66 | 2,578,535.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tan, X.; Fan, F. Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4726. https://doi.org/10.3390/rs14194726
Wang S, Tan X, Fan F. Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sensing. 2022; 14(19):4726. https://doi.org/10.3390/rs14194726
Chicago/Turabian StyleWang, Sishi, Xin Tan, and Fenglei Fan. 2022. "Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau" Remote Sensing 14, no. 19: 4726. https://doi.org/10.3390/rs14194726
APA StyleWang, S., Tan, X., & Fan, F. (2022). Landscape Ecological Risk Assessment and Impact Factor Analysis of the Qinghai–Tibetan Plateau. Remote Sensing, 14(19), 4726. https://doi.org/10.3390/rs14194726