An Efficient Information-Reinforced Lidar Deep Completion Network without RGB Guided
Abstract
:1. Introduction
- We propose a confidence re-aggregation method, which is re-aggregate the local area, effectively based on the confidence of the local pixel neighborhood to improve the estimation accuracy of local details.
- We designed a dense progressive fusion network structure to further improve the accuracy of global completion by using multi-scale information.
- We propose a 1D to 2D point folding module to increase the density of global depth information.
2. Methods
2.1. Confidence Re-Aggregation Module
2.2. Densely Progressive Fusion Module
2.3. Point Folding Module
3. Experimental Evaluation
3.1. Datasets and Setup
3.2. Results of Comparative Experiments
3.3. Results of the Ablation Experiments
3.3.1. Confidence Re-Aggregation Module
3.3.2. Densely Progressive Fusion Module
3.3.3. Point Folding Module
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liao, Y.; Huang, L.; Wang, Y.; Kodagoda, Y.S.Y.; Liu, Y. Parse geometry from a line: Monocular depth estimation with partial laser observation. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5059–5066. [Google Scholar]
- Ku, J.; Harakeh, A.; Waslander, S.L. In Defense of Classical Image Processing: Fast Depth Completion on the CPU. In Proceedings of the 2018 15th Conference on Computer and Robot Vision (CRV), Toronto, ON, Canada, 8–10 May 2018; pp. 16–22. [Google Scholar]
- Hu, J.; Bao, C.; Ozay, M.; Fan, C.; Gao, Q.; Liu, H.; Lam, T.L. Deep Depth Completion A Survey. arXiv 2022, arXiv:2205.05335v2. [Google Scholar]
- Dimitrievski, M.; Veelaert, P.; Philips, W. Learning Morphological Operators for Depth Completion. In Proceedings of the Advanced Concepts for Intelligent Vision Systems (ACIVS), Poitiers, France, 24–27 September 2018; p. 11182. [Google Scholar]
- Min, X.; Wang, Y.; Zhang, K.; Sheng, Y.; Qin, J.; Huang, Y. Hole Filling of Single Building Point Cloud Considering Local Similarity among Floors. Remote Sens. 2022, 14, 1900. [Google Scholar] [CrossRef]
- Wei, M.; Zhu, M.; Zhang, Y.; Sun, J.; Wang, J. Cyclic Global Guiding Network for Point Cloud Completion. Remote Sens. 2022, 14, 3316. [Google Scholar] [CrossRef]
- Chodosh, N.; Wang, C.; Lucey, S. Deep Convolutional Compressed Sensing for LiDAR Depth Completion. arXiv 2018, arXiv:1803.08949. [Google Scholar]
- Jaritz, M.; Charette, R.; Wirbel, D.E.; Perrotton, X.; Nashashibi, F. Sparse and Dense Data with CNNs: Depth Completion and Semantic Segmentation. In Proceedings of the 2018 International Conference on 3D Vision (3DV), Verona, Italy, 5–8 September 2018; pp. 52–60. [Google Scholar]
- Ma, F.; Karaman, S. Sparse-to-Dense: Depth Prediction from Sparse Depth Samples and a Single Image. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 4796–4803. [Google Scholar]
- Ma, F.; Cavalheiro, G.V.; Karaman, S. Self-supervised Sparse-to-Dense: Self-supervised Depth Completion from LiDAR and Monocular Camera. arXiv 2018, arXiv:1807.00275. [Google Scholar]
- Chen, Z.; Badrinarayanan, V.; Drozdov, G.; Rabinovich, A. Estimating Depth from RGB and Sparse Sensing. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; p. 11208. [Google Scholar]
- Zhao, S.; Gong, M.; Fu, H.; Tao, D. Adaptive Context-Aware Multi-Modal Network for Depth Completion. IEEE Trans. Image Processing 2021, 30, 5264–5276. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, X.; Shi, J.; Zhang, G.; Bao, H.; Li, H. Depth Completion from Sparse LiDAR Data with Depth-Normal Constraints. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2811–2820. [Google Scholar]
- Qiu, J. DeepLiDAR: Deep Surface Normal Guided Depth Prediction for Outdoor Scene from Sparse LiDAR Data and Single-Color Image. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3308–3317. [Google Scholar]
- Yan, L.; Liu, K.; Belyaev, E. Revisiting Sparsity Invariant Convolution: A Network for Image Guided Depth Completion. IEEE Access 2020, 8, 126323–126332. [Google Scholar] [CrossRef]
- Hu, M.; Wang, S.; Li, B.; Ning, S.; Fan, L.; Gong, X. PENet: Towards Precise and Efficient Image Guided Depth Completion. arXiv 2021, arXiv:2103.00783. [Google Scholar]
- Yan, Z.; Wang, K.; Li, X.; Zhang, Z.; Li, J.; Yang, J. RigNet: Repetitive Image Guided Network for Depth Completion. arXiv 2021, arXiv:2107.13802. [Google Scholar]
- Zhang, Y.; Wei, P.; Zheng, N. A Multi-Scale Guided Cascade Hourglass Network for Depth Completion. Neurocomputing 2021, 441, 291–299. [Google Scholar] [CrossRef]
- Uhrig, J.; Schneider, N.; Schneider, L.; Franke, U.; Brox, T.; Geiger, A. Sparsity Invariant CNNs. In Proceedings of the 2017 International Conference on 3D Vision (3DV), Qingdao, China, 10–12 October 2017; pp. 11–20. [Google Scholar]
- Tang, J.; Tian, F.P.; Feng, W.; Li, J.; Tan, P. Learning Guided Convolutional Network for Depth Completion. IEEE Trans. Image Processing 2021, 30, 1116–1129. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wong, A.; Soatto, S. Dense Depth Posterior (DDP) from Single Image and Sparse Range. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 3348–3357. [Google Scholar]
- Eldesokey, A.; Felsberg, M.; Khan, F.S. Confidence Propagation through CNNs for Guided Sparse Depth Regression. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2423–2436. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Fan, J.; Cheng, S.; Yi, S.; Wang, X.; Li, H. HMS-Net: Hierarchical Multi-Scale Sparsity-Invariant Network for Sparse Depth Completion. IEEE Trans. Image Processing 2020, 29, 3429–3441. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Mello, S.D.; Gu, J.; Zhong, G.; Yang, M.; Kautz, J. SPN: Learning affinity via spatial propagation networks. arXiv 2017, arXiv:1710.01020. [Google Scholar]
- Eldesokey, A.; Felsberg, M.; Holmquist, M.; Persson, K. Uncertainty-Aware CNNs for Depth Completion: Uncertainty from Beginning to End. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 12011–12020. [Google Scholar]
- Shivakumar, S.S.; Nguyen, T.; Miller, I.; Chen, D.S.W.; Kumar, V.C.; Taylor, J. DFuseNet: Deep Fusion of RGB and Sparse Depth Information for Image Guided Dense Depth Completion. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; pp. 13–20. [Google Scholar]
- Gansbeke, W.V.; Neven, D.; Brabandere, B.D.; Gool, L.V. Sparse and Noisy LiDAR Completion with RGB Guidance and Uncertainty. In Proceedings of the 2019 16th International Conference on Machine Vision Applications (MVA), Tokyo, Japan, 27–31 May 2019; pp. 1–6. [Google Scholar]
- Cheng, X.; Wang, P.; Guan, C.; Yang, R. CSPN++: Learning Context and Resource Aware Convolutional Spatial Propagation Networks for Depth Completion. arXiv 2019, arXiv:1911.05377. [Google Scholar] [CrossRef]
- Cheng, X.; Wang, P.; Yang, R. Learning Depth with Convolutional Spatial Propagation Network. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2361–2379. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Joo, K.; Hu, Z.; Liu, C.K.; So Kweon, I. Non-Local Spatial Propagation Network for Depth Completion. arXiv 2020, arXiv:2007.10042. [Google Scholar]
- Lin, Y.; Cheng, T.; Zhong, Q.; Zhou, W.; Yang, H. Dynamic Spatial Propagation Network for Depth Completion. arXiv 2022, arXiv:2202.09769. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv 2015, arXiv:1505.04597. [Google Scholar]
- Yang, Y.; Feng, C.; Shen, Y.; Tian, D. FoldingNet: Point Cloud Auto-Encoder via Deep Grid Deformation. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 206–215. [Google Scholar]
- Geiger, A.; Lenz, P.; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. J. Robot. Res. 2013, 32, 1231–1237. [Google Scholar] [CrossRef] [Green Version]
- Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of the Computer Vision (ECCV), Florence, Italy, 7–13 October 2012. [Google Scholar]
- Ferstl, D.; Reinbacher, C.; Ranftl, R.; Ruether, M.; Bischof, H. Image Guided Depth Upsampling Using Anisotropic Total Generalized Variation. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8 December 2013; pp. 993–1000. [Google Scholar]
- Zhang, Y.; Funkhouser, T. Deep Depth Completion of a Single RGB-D Image. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 175–185. [Google Scholar]
SI-Net [19] | NCNN [22] | IP-Basic [2] | S2D++ [9] | PNCNN [25] | EIR-Net | |
---|---|---|---|---|---|---|
MAE | 481.27 | 360.28 | 302.60 | 288.64 | 251.77 | 225.70 |
IMAE | 1.78 | 1.52 | 1.29 | 1.35 | 1.05 | 1.02 |
RMSE | 1601.33 | 1268.22 | 1288.46 | 954.36 | 960.05 | 1061.75 |
IRMSE | 4.94 | 4.67 | 3.78 | 3.21 | 3.37 | 3.77 |
Time (s) | 0.01 | 0.01 | - | 0.04 | 0.02 | 0.02 |
TGV [37] | RGB-d [38] | S2D [9] | NCNN [22] | SPN [24] | PNCNN [25] | EIR-Net | |
---|---|---|---|---|---|---|---|
RMSE | 0.635 | 0.228 | 0.230 | 0.171 | 0.162 | 0.144 | 0.142 |
ABSREL | 0.123 | 0.042 | 0.044 | 0.026 | 0.027 | 0.021 | 0.020 |
δ1 | 81.9 | 97.1 | 97.1 | 98.3 | 98.5 | 98.8 | 98.8 |
δ2 | 93.0 | 99.3 | 99.4 | 99.6 | 99.7 | 99.8 | 99.8 |
δ3 | 96.8 | 99.7 | 99.8 | 99.9 | 99.9 | 99.9 | 99.9 |
Model | Original | +CR(TC) | +CR(AS*) | +CR(AS) |
---|---|---|---|---|
MAE | 227.416 | 227.581 | 226.786 | 226.647 |
MSE | 1,274,874.118 | 1,298,745.842 | 1,281,756.162 | 1,270,920.852 |
RMSE | 1065.504 | 1074.616 | 1067.330 | 1063.893 |
IMAE | 1.02 | 0.98 | 0.99 | 0.97 |
IRMSE | 13.821 | 5.961 | 13.351 | 5.763 |
Time | 0.014 | 0.017 | 0.017 | 0.017 |
Model | MAE | RMSE | IMAE | IRMSE | δ1 | δ2 | δ3 | Time |
---|---|---|---|---|---|---|---|---|
None | 226.647 | 1063.893 | 0.97 | 5.763 | 99.594 | 99.845 | 99.921 | 0.017 |
DPF(1) | 226.266 | 1066.031 | 1.06 | 22.622 | 99.595 | 99.845 | 99.921 | 0.018 |
DPF(2) | 225.871 | 1063.624 | 1.07 | 5.363 | 99.595 | 99.846 | 99.921 | 0.020 |
+P-Folding | 225.703 | 1061.745 | 1.02 | 3.774 | 99.600 | 99.846 | 99.922 | 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.; Zhu, M.; Zhang, Y.; Sun, J.; Wang, J. An Efficient Information-Reinforced Lidar Deep Completion Network without RGB Guided. Remote Sens. 2022, 14, 4689. https://doi.org/10.3390/rs14194689
Wei M, Zhu M, Zhang Y, Sun J, Wang J. An Efficient Information-Reinforced Lidar Deep Completion Network without RGB Guided. Remote Sensing. 2022; 14(19):4689. https://doi.org/10.3390/rs14194689
Chicago/Turabian StyleWei, Ming, Ming Zhu, Yaoyuan Zhang, Jiaqi Sun, and Jiarong Wang. 2022. "An Efficient Information-Reinforced Lidar Deep Completion Network without RGB Guided" Remote Sensing 14, no. 19: 4689. https://doi.org/10.3390/rs14194689
APA StyleWei, M., Zhu, M., Zhang, Y., Sun, J., & Wang, J. (2022). An Efficient Information-Reinforced Lidar Deep Completion Network without RGB Guided. Remote Sensing, 14(19), 4689. https://doi.org/10.3390/rs14194689