Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. PNPP and HNPP Calculation
2.3.2. Trend Analysis
2.3.3. Scenario Establishment
2.3.4. Correlation Analysis
2.3.5. Stability Analysis
2.3.6. Hurst Exponent and R/S Analysis
- (a)
- To divide the ANPP time series {ANPP()} ( =1,2,3,…,n) into sub-series X(t), and for each sub-series t = 1,2,3,…,.
- (b)
- To define the mean sequence of the time series,
- (c)
- To calculate the cumulative deviation,
- (d)
- To generate the range sequence,
- (e)
- To compute the standard deviation sequence,
- (f)
- To rescale the range,
3. Results
3.1. Spatiotemporal Variations in ANPP, PNPP, and HNPP
3.2. Contributions of Climate Change and Human Activities to ANPP Variation
3.3. Relationships between ANPP and Climatic Factors
3.4. Prediction of Future ANPP Trends
4. Discussion
4.1. Effects of Climate Change and Human Activities on Vegetation
4.2. Limitations and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Y.; Zhang, Z.Y.; Tong, L.J.; Khalifa, M.; Wang, Q.; Gang, C.C.; Wang, Z.Q.; Li, J.L.; Sun, Z.G. Assessing the Effects of Climate Variation and Human Activities on Grassland Degradation and Restoration Across the Globe. Ecol. Indic. 2019, 106, 105504. [Google Scholar] [CrossRef]
- Overpeck, J.T.; Breshears, D.D. The Growing Challenge of Vegetation Change. Science 2021, 372, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Dawson, T.P.; Jackson, S.T.; House, J.I.; Prentice, I.C.; Mace, G.M. Beyond Predictions: Biodiversity Conservation in A Changing Climate. science 2011, 332, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Ding, Y.H.; Liu, Y.J.; Li, X.C. The Characteristics of Moisture Recycling and Its Impact on Regional Precipitation Against the Background of Climate Warming over Northwest China. Int. J. Climatol. 2019, 39, 5241–5255. [Google Scholar] [CrossRef]
- Ge, W.Y.; Deng, L.Q.; Wang, F.; Han, J.Q. Quantifying the Contributions of Human Activities and Climate Change to Vegetation Net Primary Productivity Dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef] [PubMed]
- Morecroft, M.D.; Duffield, S.; Harley, M.; Pearce-Higgins, J.W.; Stevens, N.; Watts, O.; Whitaker, J. Measuring the Success of Climate Change Adaptation and Mitigation in Terrestrial Ecosystems. Science 2019, 366, eaaw9256. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.J.; Defries, R. Ecologicl Mechanisms Linking Protected Areas to Surrounding Lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.E.; Dudley, N.; Segan, D.B.; Hockings, M. The Performance and Potential of Protected Areas. Nature 2014, 515, 67–73. [Google Scholar] [CrossRef]
- Jiang, L.L.; Guli, J.; Bao, A.M.; Guo, H.; Ndayisaba, F. Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [Google Scholar] [CrossRef]
- Berdimbetov, T.; Ilyas, S.; Ma, Z.G.; Bilal, M.; Nietullaeva, S. Climatic Change and Human Activities Link to Vegetation Dynamics in the Aral Sea Basin Using NDVI. Earth Syst. Environ. 2021, 5, 303–318. [Google Scholar] [CrossRef]
- Zhao, S.; Pereira, P.; Wu, X.Q.; Zhou, J.X.; Cao, J.H.; Zhang, W.X. Global Karst Vegetation Regime and Its Response to Climate Change and Human Activities. Ecol. Indic. 2020, 113, 106208. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.B.; Wang, Z.Q.; Chen, Y.Z.; Gang, C.C.; An, R.; Li, J.L. Vegetation Dynamics and Its Driving Forces from Climate Change and Human Activities in the Three-River Source Region, China from 1982 to 2012. Sci. Total Environ. 2016, 563–564, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.F.; Li, J.X.; Fu, X.; Wu, G. Impacts of Land Conversion and Management Measures on Net Primary Productivity in Semi-arid Grassland. Ecosyst. Health Sustain. 2020, 6, 1749010. [Google Scholar] [CrossRef]
- Naeem, S.; Zhang, Y.Q.; Tian, J.; Qamer, F.M.; Latif, A.; Paul, P.K. Quantifying the Impacts of Anthropogenic Activities and Climate Variations on Vegetation Productivity Changes in China from 1985 to 2015. Remote Sens. 2020, 12, 1113. [Google Scholar] [CrossRef]
- Cramer, W.; Field, C.B. Comparing Global Models of Terrestrial Net Primary Productivity (NPP): Introduction. Glob. Change Biol. 1999, 5, iii–iv. [Google Scholar] [CrossRef]
- Crabtree, R.; Potter, C.; Mullen, R.; Sheldon, J.; Huang, S.; Harmsen, J.; Rodman, A.; Jean, C. A Modeling and Spatio-temporal Analysis Framework for Monitoring Environmental Change Using NPP as an Ecosystem Indicator. Remote Sens. Environ. 2009, 113, 1486–1496. [Google Scholar] [CrossRef]
- Sun, J.; Yue, Y.; Niu, H. Evaluation of NPP Using Three Models Compared with MODIS-NPP Data over China. PLoS ONE 2021, 16, e0252149. [Google Scholar] [CrossRef]
- Liu, Z.J.; Liu, Y.S.; Wang, J.Y. A Global Analysis of Agricultural Productivity and Water Resource Consumption Changes over Cropland Expansion Regions. Agric. Ecosyst. Environ. 2021, 321, 107630. [Google Scholar] [CrossRef]
- Cleveland, C.C.; Taylor, P.; Chadwick, K.D.; Dahlin, K.; Doughty, C.E.; Malhi, Y.; Smith, W.K.; Sullivan, B.W.; Wieder, W.R.; Townsend, A.R. A Comparison of Plot-based Satellite and Earth System Model Estimates of Tropical Forest Net Primary Production. Glob. Biogeochem. Cycles 2015, 29, 626–644. [Google Scholar] [CrossRef]
- Zhao, M.; Running, S.W. Response to Comments on “Drought-Induced Reduction in Global Terrestrial Net Primary Production from 2000 Through 2009”. Science 2011, 333, 1093-e. [Google Scholar] [CrossRef] [Green Version]
- Dimitrakopoulos, P.G.; Koukoulas, S.; Michelaki, C.; Galanidis, A. Anthropogenic and Environmental Determinants of Alien Plant Species Spatial Distribution on An Island Scale. Sci. Total Environ. 2022, 805, 150314. [Google Scholar] [CrossRef] [PubMed]
- Gang, C.C.; Wang, Z.N.; You, Y.F.; Liu, Y.; Xu, R.T.; Bian, Z.H.; Pan, N.Q.; Gao, X.R.; Chen, M.X.; Zhang, M. Divergent Responses of Terrestrial Carbon Use Efficiency to Climate Variation from 2000 to 2018. Glob. Planet. Change 2022, 208, 103709. [Google Scholar] [CrossRef]
- Ibañez-Alvarez, M.; Baraza, E.; Serrano, E.; Romero-Munar, A.; Cardona, C.; Bartolome, J.; Krumins, J.A. Ungulates Alter Plant Cover without Consistent Effect on Soil Ecosystem Functioning. Agric. Ecosyst. Environ. 2022, 326, 107796. [Google Scholar] [CrossRef]
- Hu, J.N.; Nan, Z.T.; Ji, H.L. Spatiotemporal Characteristics of NPP Changes in Frozen Ground Areas of the Three-River Headwaters Region, China: A Regional Modeling Perspective. Front. Earth Sci. 2022, 10, 838558. [Google Scholar] [CrossRef]
- Su, X.K.; Shen, Y.; Zhou, W.; Liu, Y.Q.; Cheng, H.; Liu, G.H. Mapping Forest Disturbance and Recovery for Ecological Security Improvement on the Qinghai-Tibet Plateau: A Case Study from Three Parallel Rivers Region. Glob. Ecol. Conserv. 2022, 33, e01983. [Google Scholar] [CrossRef]
- Chen, X.; Su, Z.; Ma, Y.; Liu, S.; Yu, Q.; Xu, Z. Development of a 10-Year (2001–2010) 0.1° Data Set of Land-Surface Energy Balance for Mainland China. Atmos. Chem. Phys. 2014, 14, 13097–13117. [Google Scholar] [CrossRef]
- Cui, X.F.; Graf, H.F. Recent Land Cover Changes on the Tibetan Plateau: A Review. Clim. Change 2009, 94, 47–61. [Google Scholar] [CrossRef]
- Chen, H.; Zhu, Q.; Peng, C.H.; Wu, N.; Wang, Y.F.; Fang, X.Q.; Gao, Y.H.; Zhu, D.; Yang, G.; Tian, J.Q.; et al. The Impacts of Climate Change and Human Activities on Biogeochemical Cycles on the Qinghai-Tibetan Plateau. Glob. Change Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Yu, H.L.; Ding, Q.N.; Meng, B.P.; Lv, Y.Y.; Liu, C.; Zhang, X.Y.; Sun, Y.; Li, M.; Yi, S.H. The Relative Contributions of Climate and Grazing on the Dynamics of Grassland NPP and PUE on the Qinghai-Tibet Plateau. Remote Sens. 2021, 13, 3424. [Google Scholar] [CrossRef]
- Gao, J.G.; Zhang, Y.L.; Liu, L.S.; Wang, Z.F. Climate Change as the Major Driver of Alpine Grasslands Expansion and Contraction: A Case Study in the Mt. Qomolangma (Everest) National Nature Preserve, southern Tibetan Plateau. Quat. Int. 2014, 336, 108–116. [Google Scholar] [CrossRef]
- Zhang, Y.; Ganjurjav, H.; Dong, S.K.; Gao, Q.Z. Excessive Plant Compensatory Growth: A Potential Endogenous Driver of Meadow Degradation on the Qinghai-Tibetan Plateau. Ecosyst. Health Sustain. 2020, 6, 1816500. [Google Scholar] [CrossRef]
- Xiong, Q.L.; Xiao, Y.; Liang, P.H.; Li, L.J.; Zhang, L.; Li, T.; Pan, K.W.; Liu, C.G. Trends in Climate Change and Human Interventions Indicate Grassland Productivity on the Qinghai–Tibetan Plateau from 1980 to 2015. Ecol. Indic. 2021, 129, 108010. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.J.; Zhu, J.T.; Liu, Y.J.; Zu, J.X.; Zhang, J. The Influences of Climate Change and Human Activities on Vegetation Dynamics in the Qinghai-Tibet Plateau. Remote Sens. 2016, 8, 876. [Google Scholar] [CrossRef]
- Wang, X.M.; Lang, L.L.; Yan, P.; Wang, G.T.; Li, H.; Ma, W.Y.; Hua, T. Aeolian Processes and Their Effect on Sandy Desertification of the Qinghai–Tibet Plateau: A Wind Tunnel Experiment. Soil Tillage Res. 2016, 158, 67–75. [Google Scholar] [CrossRef]
- Xiong, Q.L.; Xiao, Y.; Halmy, M.W.A.; Dakhil, M.A.; Liang, P.H.; Liu, C.G.; Zhang, L.; Pandey, B.; Pan, K.; El Kafraway, S.B.; et al. Monitoring the Impact of Climate Change and Human Activities on Grassland Vegetation Dynamics in the Northeastern Qinghai-Tibet Plateau of China during 2000–2015. J. Arid Land 2019, 11, 637–651. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Wu, X.; Qi, W.; Li, S.C.; Bai, W.Q. Characteristics and Protection Effectiveness of Nature Reserves on the Tibetan Plateau, China. Resour. Sci. 2015, 37, 1455–1464. (In Chinese) [Google Scholar]
- Kienast, F.; Wildi, O.; Brzeziecki, B. Potemtial Impacts of Climate Change on Species Richness in Mountain Forests An Ecological Risk Assessment. Biol. Conserv. 1998, 83, 291–305. [Google Scholar] [CrossRef]
- González-Alcaraz, M.N.; Jiménez-Cárceles, F.J.; Álvarez, Y.; Álvarez-Rogel, J. Gradients of Soil Salinity and Moisture, and Plant Distribution, in a Mediterranean Semiarid Saline Watershed: A Model of Soil–plant Relationships for Contributing to the Management. Catena 2014, 115, 150–158. [Google Scholar] [CrossRef]
- García-Gil, G.; Sosa-Escalante, J.E.; Aguilar-Cordero, W.d.J.; Flores-Guido, J.S.; Martínez, y.Y.F. Change of Land Use in the Zone Subject to Ecological Conservation Cuxtal Reserve, Merida, Yucatan, Mexico. Investig. Geográficas 2020, 101, e59895. [Google Scholar]
- Zhang, X.C.; Jin, X.M. Vegetation Dynamics and Responses to Climate Change and Anthropogenic Activities in the Three-River Headwaters Region, China. Ecol. Indic. 2021, 131, 108223. [Google Scholar] [CrossRef]
- Yan, W.C.; Wang, Y.Y.; Chaudhary, P.; Ju, P.J.; Zhu, Q.; Kang, X.M.; Chen, H.; He, Y.X. Effects of Climate Change and Human Activities on Net Primary Production of Wetlands on the Zoige Plateau from 1990 to 2015. Glob. Ecol. Conserv. 2022, 35, e02052. [Google Scholar] [CrossRef]
- Qin, X.J.; Sun, J.; Liu, M.; Lu, X.Y. The Impact of Climate Change and Human Activity on Net Primary Production in Tibet. Pol. J. Environ. Stud. 2016, 25, 2113–2120. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Q.W.; Zou, F.L. Spatio-Temporal Changes of Vegetation Net Primary Productivity and Its Driving Factors on the Qinghai-Tibetan Plateau from 2001 to 2017. Remote Sens. 2021, 13, 1566. [Google Scholar] [CrossRef]
- Ugbaje, S.U.; Odeh, I.O.A.; Bishop, T.F.A.; Li, J.L. Assessing the Spatio-Temporal Variability of Vegetation Productivity in Africa: Quantifying the Relative Roles of Climate Variability and Human Activities. Int. J. Digit. Earth 2016, 10, 879–900. [Google Scholar] [CrossRef]
- Jahelnabi, A.E.; Wu, W.C.; Boloorani, A.D.; Salem, H.M.; Nazeer, M.; Fadoul, S.M.; Khan, M.S. Assessment the Influence of Climate and Human Activities in Vegetation Degradation using GIS and Remote Sensing Techniques. Contemp. Probl. Ecol. 2020, 13, 685–693. [Google Scholar] [CrossRef]
- Wu, N.T.; Liu, A.J.; Ye, R.H.; Yu, D.S.; Du, W.L.; Chaolumeng, Q.; Liu, G.X.; Yu, S. Quantitative Analysis of Relative Impacts of Climate Change and Human Activities on Xilingol Grassland in Recent 40 years. Glob. Ecol. Conserv. 2021, 32, e01884. [Google Scholar] [CrossRef]
- Chen, T.; Bao, A.M.; Jiapaer, G.; Guo, H.; Zheng, G.X.; Jiang, L.L.; Chang, C.; Tuerhanjiang, L. Disentangling the Relative Impacts of Climate Change and Human Activities on Arid and Semiarid Grasslands in Central Asia during 1982–2015. Sci. Total Environ. 2019, 653, 1311–1325. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Tao, J.; Wu, J.; Wang, J.; Shi, P.; Zhang, Y.; Yu, C. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric. For. Meteorol. 2014, 189–190, 11–18. [Google Scholar] [CrossRef]
- Yin, L.; Dai, E.F.; Zheng, D.; Wang, Y.H.; Ma, L.; Tong, M. What Drives the Vegetation Dynamics in the Hengduan Mountain Region, Southwest China: Climate Change or Human Activity? Ecol. Indic. 2020, 112, 106013. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, T. Long-Term Spatial and Temporal Variation of Near Surface Air Temperature in Southwest China During 1969–2018. Front. Earth Sci. 2021, 9, 753757. [Google Scholar] [CrossRef]
- Igbawua, T.; Zhang, J.H.; Yao, F.M.; Ali, S. Long Range Correlation in Vegetation over West Africa from 1982 to 2011. IEEE Access 2019, 7, 119151–119165. [Google Scholar] [CrossRef]
- Bashir, B.; Cao, C.X.; Naeem, S.; Joharestani, M.Z.; Bo, X.; Huma, A.; Jamal, K.; Mumtaz, F. Spatio-Temporal Vegetation Dynamic and Persistence under Climatic and Anthropogenic Factors. Remote Sens. 2020, 12, 2612. [Google Scholar] [CrossRef]
- Pal, S.; Dutta, S.; Nasrin, T.; Chattopadhyay, S. Hurst Exponent Approach Through Rescaled range Analysis to Study the Time Series of Summer Monsoon Rainfall over Northeast India. Theor. Appl. Climatol. 2020, 142, 581–587. [Google Scholar] [CrossRef]
- Sánchez Granero, M.A.; Trinidad Segovia, J.E.; García Pérez, J. Some Comments on Hurst Exponent and the Long Memory Processes on Capital Markets. Phys. A 2008, 387, 5543–5551. [Google Scholar] [CrossRef]
- Chen, J.H.; Yan, F.; Lu, Q. Spatiotemporal Variation of Vegetation on the Qinghai–Tibet Plateau and the Influence of Climatic Factors and Human Activities on Vegetation Trend (2000–2019). Remote Sens. 2020, 12, 3150. [Google Scholar] [CrossRef]
- Martínez, B.; Sánchez-Ruiz, S.; Campos-Taberner, M.; García-Haro, F.J.; Gilabert, M.A. Exploring Ecosystem Functioning in Spain with Gross and Net Primary Production Time Series. Remote Sens. 2022, 14, 1310. [Google Scholar] [CrossRef]
- Fibbi, L.; Moriondo, M.; Chiesi, M.; Bindi, M.; Maselli, F. Impacts of Climate Change on the Gross Primary Production of Italian Forests. Ann. For. Sci. 2019, 76, 59. [Google Scholar] [CrossRef]
- Wang, Y.M.; Zhang, Z.X.; Chen, X. The Dominant Driving Force of Forest Change in the Yangtze River Basin, China: Climate Variation or Anthropogenic Activities? Forests 2022, 13, 82. [Google Scholar] [CrossRef]
- Qian, H.F.; Joseph, R.; Zeng, N. Enhanced Terrestrial Carbon Uptake in the Northern High Latitudes in the 21st Century from the Coupled Carbon Cycle Climate Model Intercomparison Project Model projections. Glob. Change Biol. 2010, 16, 641–656. [Google Scholar] [CrossRef]
- Xu, L.; Myneni, R.B.; Chapin Iii, F.S.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature and Vegetation Seasonality Diminishment over Northern Lands. Nat. Clim. Change 2013, 3, 581–586. [Google Scholar] [CrossRef]
- Liu, W.G.; Ren, J.W.; Qin, X.; Liu, J.S.; Liu, Q.; Cui, X.Q.; Wang, Y.T. Hydrological Characteristics of the Rongbuk Glacier Catchment in Mt. Qomolangma Region in the Central Himalayas, China. J. Mt. Sci. 2010, 7, 146–156. [Google Scholar] [CrossRef]
- Teng, M.J.; Zeng, L.X.; Hu, W.J.; Wang, P.C.; Lin, H.Z.; Xiao, W.F. The Impacts of Climate Changes and Human Activities on Net Primary Productivity Vary Across An Ecotone Zone in Northwest China. Sci. Total Environ. 2020, 714, 136691. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Liu, W.B.; Mao, R.C.; Song, J.X.; Chen, Y.N.; Ma, C.; Li, M.Y. Quantitative Assessment of Driving Factors Affecting Human Appropriation of Net primary Production (HANPP) in the Qilian Mountains, China. Ecol. Indic. 2021, 121, 106997. [Google Scholar] [CrossRef]
- Sun, C.; Xu, X.D.; Wang, P.J.; Yang, D.; Zhang, S.J.; Wang, C.Z.; Cai, W.Y. The Warming and Wetting Ecological Environment Changes over the Qinghai-Tibetan Plateau and the Driving Effect of the Asian Summer Monsoon. J. Trop. Meteorol. 2022, 28, 95–108. [Google Scholar]
- Ge, G.; Shi, Z.J.; Yang, X.H.; Hao, Y.G.; Guo, H.; Kossi, F.; Xin, Z.M.; Wei, W.; Zhang, Z.Y.; Zhang, X.; et al. Analysis of Precipitation Extremes in the Qinghai-Tibetan Plateau, China: Spatio-Temporal Characteristics and Topography Effects. Atmosphere 2017, 8, 127. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Xu, Y.P.; Peng, J.; Chen, Q.X.; Wan, D.; He, K.; Shi, Z.; Li, H.Y. Spatial and Temporal Precipitation Patterns Characterized by TRMM TMPA over the Qinghai-Tibetan Plateau and Surroundings. Int. J. Remote Sens. 2018, 39, 3891–3907. [Google Scholar] [CrossRef]
- Qu, S.; Wang, L.C.; Lin, A.W.; Yu, D.Q.; Yuan, M.X.; Li, C.A. Distinguishing the Impacts of Climate Change and Anthropogenic Factors on Vegetation Dynamics in the Yangtze River Basin, China. Ecol. Indic. 2020, 108, 105724. [Google Scholar] [CrossRef]
- Qi, X.Z.; Jia, J.H.; Liu, H.Y.; Lin, Z.S. Relative Importance of Climate Change and Human Activities for Vegetation Changes on China’s Silk Road Economic Belt over Multiple Timescales. Catena 2019, 180, 224–237. [Google Scholar] [CrossRef]
- Yang, H.F.; Yao, L.; Wang, Y.B.; Li, J.L. Relative Contribution of Climate Change and Human Activities to Vegetation Degradation and Restoration in North Xinjiang, China. Rangel. J. 2017, 39, 289. [Google Scholar] [CrossRef]
- Bi, X.; Li, B.; Zhang, L.X.; Nan, B.; Zhang, X.S.; Yang, Z.H. Response of Grassland Productivity to Climate Change and Anthropogenic Activities in Arid Regions of Central Asia. PeerJ 2020, 8, e9797. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.Q.; Yang, F.; Han, B.M.; Chen, S.T.; Liu, Y.; Yang, X.; He, T.L.; Chen, X.; Liu, C.T.; et al. Spatial and Temporal Change Patterns of Net Primary Productivity and Its Response to Climate Change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid Land 2019, 12, 1–17. [Google Scholar] [CrossRef]
- Wei, Y.Q.; Lu, H.Y.; Wang, J.N.; Wang, X.F.; Sun, J. Dual Influence of Climate Change and Anthropogenic Activities on the Spatiotemporal Vegetation Dynamics Over the Qinghai-Tibetan Plateau From 1981 to 2015. Easth’s Future 2022, 10, e2021EF002566. [Google Scholar] [CrossRef]
- Zhang, F.Y.; Zhang, Z.X.; Kong, R.; Chang, J.; Tian, J.X.; Zhu, B.; Jiang, S.S.; Chen, X.; Xu, C.Y. Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sens. 2019, 11, 1451. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.Y.; Yang, P.Z.; Zhang, Z.X.; Zhang, W.; Wang, Z.Q.; Zhang, Z.Y.; Ren, H.Y.; Zhou, R.L.; Wen, Z.M.; Hu, T.M. Diverse Responses of Grassland Dynamics to Climatic and Anthropogenic Factors Across the Different Time Scale in China. Ecol. Indic. 2021, 132, 108341. [Google Scholar] [CrossRef]
- Huang, Y.; Xin, Z.; Dor-ji, T.; Wang, Y. Tibetan Plateau greening driven by warming-wetting climate change and ecological restoration in the 21st century. Land Degrad. Dev. 2022, 33, 2407–2422. [Google Scholar] [CrossRef]
- Lin, H.; Zhao, Y.; Kalhoro, G.M. Ecological Response of the Subsidy and Incentive System for Grassland Conservation in China. Land 2022, 11, 358. [Google Scholar] [CrossRef]
- Kim, J.H.; Fourcaud, T.; Jourdan, C.; Maeght, J.-L.; Mao, Z.; Metayer, J.; Meylan, L.; Pierret, A.; Rapidel, B.; Roupsard, O.; et al. Vegetation as A Driver of Temporal Variations in Slope Stability: The Impact of Hydrological Processes. Geophys. Res. Lett. 2017, 44, 4897–4907. [Google Scholar] [CrossRef]
- He, M.Z.; Zheng, J.G.; Li, X.R.; Qian, Y.L. Environmental Factors Affecting Vegetation Composition in the Alxa Plateau, China. J. Arid Environ. 2007, 69, 473–489. [Google Scholar] [CrossRef]
- Wang, R.J.; Feng, Q.S.; Jin, Z.R.; Liang, T.G. The Restoration Potential of the Grasslands on the Tibetan Plateau. Remote Sens. 2021, 14, 80. [Google Scholar] [CrossRef]
SANPP | Scenario | SPNPP | SHNPP | Contribution | Driving Factors | Abbreviation | |
---|---|---|---|---|---|---|---|
Climate (%) | Human (%) | ||||||
>0 | 1 | >0 | >0 | 100 | 0 | Climate | CDI |
2 | <0 | <0 | 0 | 100 | Human | HDI | |
3 | >0 | <0 | Climate and Human | CHII | |||
4 | <0 | >0 | Error | EI | |||
<0 | 5 | <0 | <0 | 100 | 0 | Climate | CDD |
6 | >0 | >0 | 0 | 100 | Human | HDD | |
7 | <0 | >0 | Climate &Human | CHID | |||
8 | >0 | <0 | Error | ED |
ANPP Increase | Stable ANPP | ANPP Decrease | ||||
---|---|---|---|---|---|---|
PD | APD | SSD | UD | ND | AND | |
Area (km2) | 21,4650.50 | 4002.75 | 99,696.75 | 104,760.25 | 4093.25 | 116.50 |
Percentage (%) | 50.23% | 0.94% | 23.33% | 24.51% | 0.96% | 0.03% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Lu, T. Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau. Remote Sens. 2022, 14, 4626. https://doi.org/10.3390/rs14184626
Zhou J, Lu T. Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau. Remote Sensing. 2022; 14(18):4626. https://doi.org/10.3390/rs14184626
Chicago/Turabian StyleZhou, Jia, and Tao Lu. 2022. "Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau" Remote Sensing 14, no. 18: 4626. https://doi.org/10.3390/rs14184626
APA StyleZhou, J., & Lu, T. (2022). Relative Contributions of Climate Change and Human Activities on Vegetation Productivity Variation in National Nature Reserves on the Qinghai–Tibetan Plateau. Remote Sensing, 14(18), 4626. https://doi.org/10.3390/rs14184626