Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Trial Designs
2.3. Reflectance Measurements
2.4. Plant Sampling
2.5. Statistical Analysis
3. Results
3.1. Weather Conditions
3.2. Cover Crop DM Accumulation
3.3. Universal Calibration
3.4. Species–Individual Calibration
3.5. Mixture Calibration
4. Discussion
4.1. Universal Model Approach
4.2. VI Selection
4.3. Universal vs. Species–Individual and Mixture–Individual Approach
4.4. Seasonal Challenges
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity. Glob. Change Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Blanco-Canqui, H.; Mikha, M.M.; Presley, D.R.; Claassen, M.M. Addition of Cover Crops Enhances No-Till Potential for Improving Soil Physical Properties. Soil Sci. Soc. Am. J. 2011, 75, 1471–1482. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Change Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Report from the Comission to the European Parliament and the Council: On the Implementation of the Ecological Focus Area Obligation under the Green Direct Payment Scheme; European Commission: Bruessels, Belgium, 2017. [Google Scholar]
- Vogeler, I.; Böldt, M.; Taube, F. Mineralisation of catch crop residues and N transfer to the subsequent crop. Sci. Total Environ. 2022, 810, 152142. [Google Scholar] [CrossRef]
- Tonitto, C.; David, M.B.; Drinkwater, L.E. Replacing bare fallows with cover crops in fertilizer-intensive cropping systems: A meta-analysis of crop yield and N dynamics. Agric. Ecosyst. Environ. 2006, 112, 58–72. [Google Scholar] [CrossRef]
- Böldt, M.; Taube, F.; Vogeler, I.; Reinsch, T.; Kluß, C.; Loges, R. Evaluating Different Catch Crop Strategies for Closing the Nitrogen Cycle in Cropping Systems—Field Experiments and Modelling. Sustainability 2021, 13, 394. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Magid, J.; Jensen, L.S. Catch crops and green manures as biological tools in nitrogen management in temperate zones. Adv. Agron. 2003, 79, 227–302. [Google Scholar] [CrossRef]
- Holmes, A.A.; Thompson, A.A.; Lovell, S.T.; Villamil, M.B.; Yannarell, A.C.; Dawson, J.O.; Wortman, S.E. Nitrogen provisioned and recycled by cover crops in monoculture and mixture across two organic farms. Nutr. Cycl. Agroecosystems 2019, 115, 441–453. [Google Scholar] [CrossRef]
- Florence, A.M.; McGuire, A.M. Do diverse cover crop mixtures perform better than monocultures?: A systematic review. Agron. J. 2020, 112, 3513–3534. [Google Scholar] [CrossRef]
- Tosti, G.; Benincasa, P.; Farneselli, M.; Tei, F.; Guiducci, M. Barley–hairy vetch mixture as cover crop for green manuring and the mitigation of N leaching risk. Eur. J. Agron. 2014, 54, 34–39. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Hankerson, B.; Kjaersgaard, J.; Hay, C. Estimation of Evapotranspiration from Fields with and without Cover Crops Using Remote Sensing and in situ Methods. Remote Sens. 2012, 4, 3796–3812. [Google Scholar] [CrossRef]
- Hively, W.D.; Lang, M.; McCarty, G.W.; Keppler, J.; Sadeghi, A.; McConnell, L.L. Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. J. Soil Water Conserv. 2009, 64, 303–313. [Google Scholar] [CrossRef]
- Bukowiecki, J.; Rose, T.; Ehlers, R.; Kage, H. High-Throughput Prediction of Whole Season Green Area Index in Winter Wheat with an Airborne Multispectral Sensor. Front. Plant Sci. 2019, 10, 1798. [Google Scholar] [CrossRef] [PubMed]
- Clevers, J.G.P.W.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Tucker, C.J.; Holben, B.N.; Elgin, J.H.; McMurtrey, J.E. Remote sensing of total dry-matter accumulation in winter wheat. Remote Sens. Environ. 1981, 11, 171–189. [Google Scholar] [CrossRef]
- Gitelson, A.A. Wide Dynamic Range Vegetation Index for remote quantification of biophysical characteristics of vegetation. J. Plant Physiol. 2004, 161, 165–173. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Hively, W.D.; Duiker, S.; McCarty, G.; Prabhakara, K. Remote sensing to monitor cover crop adoption in southeastern Pennsylvania. J. Soil Water Conserv. 2015, 70, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Goffart, D.; Curnel, Y.; Planchon, V.; Goffart, J.-P.; Defourny, P. Field-scale assessment of Belgian winter cover crops biomass based on Sentinel-2 data. Eur. J. Agron. 2021, 126, 126278. [Google Scholar] [CrossRef]
- Prabhakara, K.; Hively, W.D.; McCarty, G.W. Evaluating the relationship between biomass, percent groundcover and remote sensing indices across six winter cover crop fields in Maryland, United States. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 88–102. [Google Scholar] [CrossRef]
- Kira, O.; Nguy-Robertson, A.L.; Arkebauer, T.J.; Linker, R.; Gitelson, A.A. Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric. For. Meteorol. 2016, 218, 243–249. [Google Scholar] [CrossRef]
- Elvidge, C.D. Visible and near infrared reflectance characteristics of dry plant materials. Int. J. Remote Sens. 2007, 11, 1775–1795. [Google Scholar] [CrossRef]
- Curran, P.J. Remote sensing of foliar chemistry. Remote Sens. Environ. 1989, 30, 271–278. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Meza, C.M.; Rivera, J.P.; Alonso, L.; Moreno, J. A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur. J. Agron. 2013, 46, 42–52. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hall, F.G.; Sellers, P.J.; Marshak, A.L. The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 1995, 33, 481–486. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haars, J.R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systemsin the Great Plains Witherts. In Proceedings of the 3rd ERTS Symposium, Washingston, DC, USA, 1 January 1974. [Google Scholar]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Chapagain, T.; Lee, E.A.; Raizada, M.N. The Potential of Multi-Species Mixtures to Diversify Cover Crop Benefits. Sustainability 2020, 12, 2058. [Google Scholar] [CrossRef] [Green Version]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation monitoring using multispectral sensors—Best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 2019, 7, 54–75. [Google Scholar] [CrossRef]
- DWD. Wetter und Klima—Deutscher Wetterdienst: Kiel-Kronshagen (2565). Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/multi_annual/mean_91-20/ (accessed on 29 April 2022).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hijmans, R.J. Raster: Geographic Data Analysis and Modeling [R package version 3.5-29]; Comprehensive R Archive Network (CRAN): Vienna, Austria, 2022. [Google Scholar]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Dong, T.; Meng, J.; Shang, J.; Liu, J.; Wu, B. Evaluation of Chlorophyll-Related Vegetation Indices Using Simulated Sentinel-2 Data for Estimation of Crop Fraction of Absorbed Photosynthetically Active Radiation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4049–4059. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Chen, P. A Comparison of Two Approaches for Estimating the Wheat Nitrogen Nutrition Index Using Remote Sensing. Remote Sens. 2015, 7, 4527–4548. [Google Scholar] [CrossRef]
- Feng, W.; Zhang, H.-Y.; Zhang, Y.-S.; Qi, S.-L.; Heng, Y.-R.; Guo, B.-B.; Ma, D.-Y.; Guo, T.-C. Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Res. 2016, 198, 238–246. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L.; Peng, Y.; Gitelson, A.A.; Arkebauer, T.J.; Pimstein, A.; Herrmann, I.; Karnieli, A.; Rundquist, D.C.; Bonfil, D.J. Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm. Agric. For. Meteorol. 2014, 192, 140–148. [Google Scholar] [CrossRef]
- Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Stow, D.; Nichol, C.; Wade, T.; Assmann, J.; Simpson, G.; Helfter, C. Illumination Geometry and Flying Height Influence Surface Reflectance and NDVI Derived from Multispectral UAS Imagery. Drones 2019, 3, 55. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correction Workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Royimani, L.; Mutanga, O.; Dube, T. Progress in Remote Sensing of Grass Senescence: A Review on the Challenges and Opportunities. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 7714–7723. [Google Scholar] [CrossRef]
- Di Bella, C.M.; Paruelo, J.M.; Becerra, J.E.; Bacour, C.; Baret, F. Effect of senescent leaves on NDVI-based estimates of f APAR: Experimental and modelling evidences. Int. J. Remote Sens. 2010, 25, 5415–5427. [Google Scholar] [CrossRef]
- Olsson, P.-O.; Vivekar, A.; Adler, K.; Garcia Millan, V.E.; Koc, A.; Alamrani, M.; Eklundh, L. Radiometric Correction of Multispectral UAS Images: Evaluating the Accuracy of the Parrot Sequoia Camera and Sunshine Sensor. Remote Sens. 2021, 13, 577. [Google Scholar] [CrossRef]
Cover Crop | Oilseed Radish | Saia Oat | Spring Vetch | Winter Rye |
---|---|---|---|---|
Botanical name | Raphanus sativus | Avena strigosa | Vicia sativa | Secale cereale |
Family | Brassicaceae | Poaceae | Leguminosae | Poaceae |
Abbreviation | OR | SO | SV | WR |
Winterhardiness | no | no | no | yes |
Trial | Sowing Date | Nitrogen Levels (kg N ha−1) |
---|---|---|
Trial A | 20 August 2018 23 August 2019 | 0 (0N) |
Trial B | 17 August 2018 3 September 2018 24 August 2019 10 September 2019 | 0 (0N); 60 (60N) 0 (0N); 40 (40N) 0 (0N); 60 (60N) 0 (0N); 40 (40N) |
Vegetation Index | Abbreviation | Formula | Reference |
---|---|---|---|
Simple ratio | SRred | Jordan [31] | |
Simple ratio red edge | SRred edge | Sims and Gamon [37] | |
Normalised difference vegetation index | NDred | Rouse et al. [30] | |
Red edge normalised difference vegetation index | NDred edge | Dong et al. [38], Gitelson and Merzlyak [39] | |
Red: 660 nm; RE: 735 nm; NIR: 790 nm |
Parameter | VI | Equation | rMAE | R2 |
---|---|---|---|---|
GAI | SRred | −0.21 + 0.19x | 31.34 | 0.60 |
SRred edge | −4.46 + 4.75x | 41.46 | 0.39 | |
NDred | −2.46 + 5.51x | 39.91 | 0.43 | |
NDred edge | −0.05 + 13.74x | 40.93 | 0.40 | |
DM | SRred | −18.51 + 14.56x | 50.37 | 0.53 |
SRred edge | −361.79 + 377.76x | 63.38 | 0.36 | |
NDred | −204.94 + 441.53x | 61.81 | 0.41 | |
NDred edge | −10.66 + 1097.02x | 62.67 | 0.37 | |
N | SRred | 0.43 + 0.4x | 35.88 | 0.45 |
SRred edge | −8.1 + 9.72x | 43.83 | 0.26 | |
NDred | −5.72 + 13.6x | 38.91 | 0.43 | |
NDred edge | 0.88 + 28.68x | 43.37 | 0.27 |
rMAE % | |||
---|---|---|---|
Parameter | Species | Species–Individual | Universal |
GAI | Oilseed Radish | 26.91 | 28.4 |
Saia Oat | 30.16 | 32.66 | |
Spring Vetch | 25.87 | 28.5 | |
Winter Rye | 36.11 | 35.48 | |
DM | Oilseed Radish | 32.28 | 33.26 |
Saia Oat | 35.49 | 45.18 | |
Spring Vetch | 31.18 | 64.11 | |
Winter Rye | 36.6 | 51.05 | |
N | Oilseed Radish | 31.3 | 33.79 |
Saia Oat | 28.39 | 38.27 | |
Spring Vetch | 31.25 | 39.1 | |
Winter Rye | 36.86 | 34.47 |
Parameter | Mixture | Equation | rMAE | R2 |
---|---|---|---|---|
DM | OR–SO | −5.18 + 15.51x | 30.71 | 0.3 |
OR–SV | −19.56 + 15.23x | 29.18 | 0.37 | |
SO–SV | −3.78 + 13.15x | 49.04 | 0.25 | |
SO–OR–SV | −46.26 + 17.42x | 30.3 | 0.5 | |
N | OR–SO | 1.68 + 0.37x | 27 | 0.25 |
OR–SV | 1.53 + 0.38x | 27.18 | 0.25 | |
SO–SV | 0.58 + 0.32x | 33.6 | 0.35 | |
SO–OR–SV | 0.38 + 0.47x | 25.18 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzhauser, K.; Räbiger, T.; Rose, T.; Kage, H.; Kühling, I. Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data. Remote Sens. 2022, 14, 4525. https://doi.org/10.3390/rs14184525
Holzhauser K, Räbiger T, Rose T, Kage H, Kühling I. Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data. Remote Sensing. 2022; 14(18):4525. https://doi.org/10.3390/rs14184525
Chicago/Turabian StyleHolzhauser, Katja, Thomas Räbiger, Till Rose, Henning Kage, and Insa Kühling. 2022. "Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data" Remote Sensing 14, no. 18: 4525. https://doi.org/10.3390/rs14184525
APA StyleHolzhauser, K., Räbiger, T., Rose, T., Kage, H., & Kühling, I. (2022). Estimation of Biomass and N Uptake in Different Winter Cover Crops from UAV-Based Multispectral Canopy Reflectance Data. Remote Sensing, 14(18), 4525. https://doi.org/10.3390/rs14184525