Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. MODIS Active Fire Product
2.2.2. Land Cover Product
2.3. Method
2.3.1. Dual-Platform Synthesis of Daily Active Fire Points
2.3.2. Characterization of Spatiotemporal Changes in Wildfires
3. Results
3.1. Wildfire Climatology Analysis
3.2. Decadal Wildfire Changes in NEA
3.3. Long-Term Wildfire Trends in NEA
3.4. Contrasting Changes in Wildfires in Two Specific Sub-Regions
4. Discussion
5. Conclusions
- (1)
- Wildfires ignited on cropland at low latitudes (50–60°N), considerably decreased by 81% from 2003 to 2020. Whereas forest wildfires ignited at high latitudes (north of 60°N) have nearly tripled (increasing at rate of 11~13% per year) during the study period.
- (2)
- Two specific sub-regions, the southwestern and northeastern NEA, were further selected and analyzed to determine the detailed contrasting changes in fire counts throughout NEA. The fire counts in southwestern NEA decreased by approximately 90% at a significant rate of −0.29(±0.12) × 105 per year, of which over 66% were cropland fires. However, the fire counts in northeastern NEA increased significantly at a rate of 0.23(±0.12) × 105 per year, of which ~97% occurred in boreal forests. In compassion to that in the early 21st century, nearly three times (~292%) more fire counts were newly ignited in northeastern NEA during the past two decades.
- (3)
- As a result, the wildfire structure in NEA changed fundamentally. With a proportion of over 60%, forest fires have become the leading component in NEA wildfires in recent years. The structural alternation of NEA wildfires may have profound implications on the Arctic ecosystem and climate.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- García-Lázaro, J.; Moreno-Ruiz, J.; Riaño, D.; Arbelo, M. Estimation of Burned Area in the Northeastern Siberian Boreal Forest from a Long-Term Data Record (LTDR) 1982–2015 Time Series. Remote Sens. 2018, 10, 940. [Google Scholar] [CrossRef]
- Chen, Y.; Romps, D.M.; Seeley, J.T.; Veraverbeke, S.; Riley, W.J.; Mekonnen, Z.A.; Randerson, J.T. Future increases in Arctic lightning and fire risk for permafrost carbon. Nat. Clim. Chang. 2021, 11, 404–410. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef]
- Hoy, E.E.; Turetsky, M.R.; Kasischke, E.S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Environ. Res. Lett. 2016, 11, 095001. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef]
- Loehman, R.A. Drivers of wildfire carbon emissions. Nat. Clim. Chang. 2020, 10, 1070–1071. [Google Scholar] [CrossRef]
- Mack, M.C.; Bret-Harte, M.S.; Hollingsworth, T.N.; Jandt, R.R.; Schuur, E.A.; Shaver, G.R.; Verbyla, D.L. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 2011, 475, 489–492. [Google Scholar] [CrossRef]
- Mack, C.M.; Walker, J.X.; Johnstone, F.J.; Alexander, D.H. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 2021, 372, 280–283. [Google Scholar] [CrossRef]
- Gibson, C.M.; Chasmer, L.E.; Thompson, D.K.; Quinton, W.L.; Flannigan, M.D.; Olefeldt, D. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 2018, 9, 3041. [Google Scholar] [CrossRef] [Green Version]
- Schuur, E.A.; McGuire, A.D.; Schadel, C.; Grosse, G.; Harden, J.W.; Hayes, D.J.; Hugelius, G.; Koven, C.D.; Kuhry, P.; Lawrence, D.M.; et al. Climate change and the permafrost carbon feedback. Nature 2015, 520, 171–179. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef]
- Schmale, J.; Zieger, P.; Ekman, A.M.L. Aerosols in current and future Arctic climate. Nat. Clim. Chang. 2021, 11, 95–105. [Google Scholar] [CrossRef]
- Winiger, P.; Andersson, A.; Eckhardt, S.; Stohl, A. Siberian Arctic black carbon sources constrained by model and observation. Proc. Natl. Acad. Sci. USA 2017, 114, E1054–E1061. [Google Scholar] [CrossRef]
- Cao, Y.; Liang, S. Recent advances in driving mechanisms of the Arctic amplification: A review. Chin. Sci. Bull. 2018, 63, 2757–2774. [Google Scholar] [CrossRef]
- Post, E.; Alley, R.B.; Christensen, T.R.; Macias-Fauria, M.; Forbes, B.C.; Gooseff, M.N.; Iler, A.; Kerby, J.T.; Laidre, K.L.; Mann, M.E.; et al. The polar regions in a 2 °C warmer world. Sci. Adv. 2019, 5, eaaw9883. [Google Scholar] [CrossRef]
- Yuan, W.; Zheng, Y.; Piao, S.; Ciais, P.; Lombardozzi, D.; Wang, Y.; Ryu, Y.; Chen, G.; Dong, W.; Hu, Z.; et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 2019, 5, eaax1396. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Park, H.; Jeong, S.; Penuelas, J. Accelerated rate of vegetation green-up related to warming at northern high latitudes. Glob. Change Biol. 2020, 26, 6190–6202. [Google Scholar] [CrossRef]
- Walker, X.J.; Rogers, B.M.; Veraverbeke, S.; Johnstone, J.F.; Baltzer, J.L.; Barrett, K.; Bourgeau-Chavez, L.; Day, N.J.; de Groot, W.J.; Dieleman, C.M.; et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 2020, 10, 1130–1136. [Google Scholar] [CrossRef]
- Park, W.; Latif, M. Multidecadal and multicentennial variability of the meridional overturning circulation. Geophys. Res. Lett. 2008, 35, L22703. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.; Wilson, A.; Silva, A.; Avila-Diaz, A.; Fernandez, A.; Rodrigues, J. Estimates of temporal-spatial variability of wildfire danger across the Pan-Arctic and extra-tropics. Environ. Res. Lett. 2021, 16, 044060. [Google Scholar] [CrossRef]
- de Groot, W.J.; Flannigan, M.D.; Cantin, A.S. Climate change impacts on future boreal fire regimes. For. Ecol. Manag. 2013, 294, 35–44. [Google Scholar] [CrossRef]
- Flannigan, D.M.; Krawchuk, A.M.; de Groot, W.J.; Wotton, B.M.; Gowman, M.L. Implications of changing climate for global wildland fire. Int. J. Wildland Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Young, A.M.; Higuera, P.E.; Duffy, P.A.; Hu, F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 2017, 40, 606–617. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef]
- Hao, W.M.; Petkov, A.; Nordgren, B.L.; Corley, R.E.; Silverstein, R.P.; Urbanski, S.P.; Evangeliou, N.; Balkanski, Y.; Kinder, B.L. Daily black carbon emissions from fires in northern Eurasia for 2002–2015. Geosci. Model Dev. 2016, 9, 4461–4474. [Google Scholar] [CrossRef]
- Hao, W.M.; Reeves, M.C.; Baggett, L.S.; Balkanski, Y.; Ciais, P.; Nordgren, B.L.; Petkov, A.; Corley, R.E.; Mouillot, F.; Urbanski, S.P.; et al. Wetter environment and increased grazing reduced the area burned in northern Eurasia from 2002 to 2016. Biogeosciences 2021, 18, 2559–2572. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I. Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia. Russ. J. Ecol. 2017, 48, 507–512. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef]
- Ponomarev, E.; Kharuk, V.; Ranson, K. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef]
- Bondur, V.G.; Mokhov, I.I.; Voronova, O.S.; Sitnov, S.A. Satellite Monitoring of Siberian Wildfires and Their Effects: Features of 2019 Anomalies and Trends of 20-Year Changes. Dokl. Earth Sci. 2020, 492, 370–375. [Google Scholar] [CrossRef]
- Gonard, S.G.; Ponomarev, E. Fire in the North: The 2020 Siberian fire season. Wildfire 2020, 29, 26–32. [Google Scholar]
- McCarty, J.L.; Smith, T.E.; Turetsky, M.R. Arctic fires re-emerging. Nat. Geosci. 2020, 13, 658–660. [Google Scholar] [CrossRef]
- Tomshin, O.; Solovyev, V. Spatio-temporal patterns of wildfires in Siberia during 2001–2020. Geocarto Int. 2021, 1–19. [Google Scholar] [CrossRef]
- Wang, Y.-R.; Hessen, D.O.; Samset, B.H.; Stordal, F. Evaluating global and regional land warming trends in the past decades with both MODIS and ERA5-Land land surface temperature data. Remote Sens. Environ. 2022, 280, 113181. [Google Scholar] [CrossRef]
- Justice, C.O.; Giglio, L.; Korontzi, S.; Owens, J.; Morisette, J.T.; Roy, D.; Descloitres, J.; Alleaume, S.; Petitcolin, F.; Kaufman, Y. The MODIS fire products. Remote Sens. Environ. 2002, 83, 244–262. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Csiszar, I.A.; Morisette, J.T.; Giglio, L. Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in northern eurasia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1757–1764. [Google Scholar] [CrossRef]
- Fusco, E.J.; Finn, J.T.; Abatzoglou, J.T.; Balch, J.K.; Dadashi, S.; Bradley, B.A. Detection rates and biases of fire observations from MODIS and agency reports in the conterminous United States. Remote Sens. Environ. 2019, 220, 30–40. [Google Scholar] [CrossRef]
- Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 2008, 112, 2711–2726. [Google Scholar] [CrossRef]
- ESA. Land Cover CCI Product User Guide Version 2; ESA: Paris, France, 2017. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Reinhart, V.; Fonte, C.C.; Hoffmann, P.; Bechtel, B.; Rechid, D.; Boehner, J. Comparison of ESA climate change initiative land cover to CORINE land cover over Eastern Europe and the Baltic States from a regional climate modeling perspective. Int. J. Appl. Earth Obs. Geoinf. 2021, 94, 102221. [Google Scholar] [CrossRef]
- Yang, Y.; Xiao, P.; Feng, X.; Li, H. Accuracy assessment of seven global land cover datasets over China. ISPRS J. Photogramm. Remote Sens. 2017, 125, 156–173. [Google Scholar] [CrossRef]
- Glushkov, I.; Zhuravleva, I.; McCarty, J.L.; Komarova, A.; Drozdovsky, A.; Drozdovskaya, M.; Lupachik, V.; Yaroshenko, A.; Stehman, S.V.; Prishchepov, A.V. Spring fires in Russia: Results from participatory burned area mapping with Sentinel-2 imagery. Environ. Res. Lett. 2021, 16, 125005. [Google Scholar] [CrossRef]
- Warneke, C.; Bahreini, R.; Brioude, J.; Brock, C.A.; de Gouw, J.A.; Fahey, D.W.; Froyd, K.D.; Holloway, J.S.; Middlebrook, A.; Miller, L.; et al. Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys. Res. Lett. 2009, 36, L02813. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kug, J.-S.; Jeong, S.-J.; Park, H.; Gabriela, S.-S. Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Sci. Adv. 2020, 6, eaax3308. [Google Scholar] [CrossRef]
- Heim, R.J.; Bucharova, A.; Rieker, D.; Yurtaev, A.; Kamp, J.; Hölzel, N. Long-term effects of fire on Arctic tundra vegetation in Western Siberia. bioRxiv 2019, 756163. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Buryak, L.V.; Shvetsov, E.G.; Conard, S.G.; Kalenskaya, O.P. The impact of increasing fire frequency on forest transformations in southern Siberia. For. Ecol. Manag. 2016, 382, 225–235. [Google Scholar] [CrossRef]
- Law, K.S.; Stohl, A.; Quinn, P.K.; Brock, C.A.; Burkhart, J.F.; Paris, J.-D.; Ancellet, G.; Singh, H.B.; Roiger, A.; Schlager, H.; et al. Arctic Air Pollution: New Insights from POLARCAT-IPY. Bull. Am. Meteorol. Soc. 2014, 95, 1873–1895. [Google Scholar] [CrossRef]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Increases in Land Surface Temperature in Response to Fire in Siberian Boreal Forests and Their Attribution to Biophysical Processes. Geophys. Res. Lett. 2018, 45, 6485–6494. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Cai, X.; Jain, P.; Flannigan, M.D. Seasonality and trends in human- and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018. Int. J. Wildland Fire 2020, 29, 473. [Google Scholar] [CrossRef]
- Hessilt, T.D.; Abatzoglou, J.T.; Chen, Y.; Randerson, J.T.; Scholten, R.C.; van der Werf, G.; Veraverbeke, S. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 2022, 17, 054008. [Google Scholar] [CrossRef]
Land Cover | Variable | P1 (±std.) | P2 (±std.) | ΔP (P2 − P1) | Relative Change (%) |
---|---|---|---|---|---|
Cropland (×105) | >55°N | 0.87 (0.28) | 0.39 (0.14) | −0.49 | −55.68% |
55–50°N | 3.44 (0.98) | 1.83 (0.50) | −1.61 | −46.85% | |
Spring | 2.54 (0.88) | 1.53 (0.47) | −1.01 | −39.69% | |
Summer | 0.75 (0.33) | 0.32 (0.06) | −0.43 | −57.58% | |
Autumn | 1.02 (0.57) | 0.36 (0.18) | −0.66 | −64.99% | |
Forest (×105) | >65°N | 0.31 (0.36) | 1.05 (1.01) | 0.74 | 241.22% |
65–60°N | 0.97 (0.52) | 2.12 (0.91) | 1.14 | 117.62% | |
60–55°N | 1.76 (0.79) | 1.54 (0.69) | −0.22 | −12.24% | |
55–50°N | 2.11 (2.10) | 1.29 (0.69) | −0.82 | −38.83% | |
Spring | 2.54 (1.67) | 1.28 (0.42) | −1.26 | −49.54% | |
Summer | 2.28 (1.27) | 4.31 (1.59) | 2.03 | 88.89% | |
Autumn | 0.33 (0.17) | 0.41 (0.32) | 0.08 | 25.44% | |
Grassland (×105) | >65°N | 0.08 (0.02) | 0.22 (0.12) | 0.14 | 174.53% |
65–60°N | 0.06 (0.09) | 0.02 (0.03) | −0.03 | −57.80% | |
60–55°N | 0.15 (0.06) | 0.06 (0.04) | −0.10 | −63.10% | |
55–50°N | 0.81 (0.31) | 0.44 (0.14) | −0.36 | −45.09% | |
Spring | 0.49 (0.18) | 0.29 (0.10) | −0.20 | −40.30% | |
Summer | 0.34 (0.15) | 0.36 (0.12) | 0.01 | 3.18% | |
Autumn | 0.27 (0.16) | 0.10 (0.04) | −0.17 | −63.25% | |
Shrubland (×104) | >65°N | 0.47 (0.40) | 0.58 (0.46) | 0.11 | 23.81% |
65–60°N | 4.24 (1.69) | 2.46 (3.10) | −1.78 | −42.06% | |
60–55°N | 0.30 (0.16) | 0.33 (0.69) | 0.03 | 9.03% | |
55–50°N | 0.11 (0.08) | 0.14 (0.26) | 0.03 | 30.11% | |
Spring | 0.80 (0.41) | 0.24 (0.13) | −0.56 | −70.44% | |
Summer | 3.74 (1.49) | 3.13 (3.83) | −0.61 | −16.19% | |
Autumn | 0.56 (0.33) | 0.12 (0.07) | −0.44 | −78.08% |
Land Cover | Variable | Baseline (2003–2005) | Linear Trend (per Year) | Linear Change (2003–2020) | Relative Trend (%) |
---|---|---|---|---|---|
Cropland (×105) | >55°N | 0.78 (0.14) | −0.04 (0.03) | −0.72 (0.54) | −5.13% |
55–50°N | 3.86 (0.22) | −0.16 (0.07) | −2.88 (1.26) | −4.15% | |
Spring | 2.29 (0.65) | −0.09 (0.07) | −1.62 (1.26) | −3.93% | |
Summer | 0.75 (0.29) | −0.04 (0.03) | −0.72 (0.54) | −5.33% | |
Autumn | 1.60 (0.61) | −0.07 (0.04) | −1.26 (0.72) | −4.38% | |
Annual | 4.65 (0.27) | −0.21 (0.09) | −3.78 (1.62) | −4.52% | |
Forest (×105) | >65°N | 0.62 (0.47) | 0.08 (0.07) | 1.44 (1.26) | 12.90% |
65–60°N | 0.89 (0.53) | 0.10 (0.07) | 1.80 (1.26) | 11.24% | |
60–55°N | 1.37 (0.54) | −0.02 (0.08) | −0.36 (1.44) | −1.46% | |
55–50°N | 3.06 (3.29) | −0.13 (0.15) | −2.34 (2.70) | −4.25% | |
Spring | 3.00 (2.55) | −0.14 (0.12) | −2.52 (2.16) | −4.67% | |
Summer | 2.51 (2.01) | 0.17 (0.16) | 3.06 (2.70) | 6.77% | |
Autumn | 0.43 (0.17) | 0.01 (0.03) | 0.18 (0.54) | 2.33% | |
Annual | 5.94 (4.68) | 0.03 (0.25) | 0.54 (4.5) | 0.51% | |
Grassland (×105) | >65°N | 0.09 (0.02) | 0.01 (0.008) | 0.18 (0.14) | 11.11% |
65–60°N | 0.06 (0.06) | −0.001 (0.007) | −0.02 (0.13) | −1.67% | |
60–55°N | 0.13 (0.03) | −0.009 (0.006) | −0.16 (0.10) | −6.92% | |
55–50°N | 1.00 (0.40) | −0.04 (0.02) | −0.72 (0.36) | −4.00% | |
Spring | 0.54 (0.25) | −0.02 (0.01) | −0.36 (0.18) | −3.70% | |
Summer | 0.32 (0.06) | 0.004 (0.014) | 0.07 (0.25) | 1.25% | |
Autumn | 0.42 (0.19) | −0.02 (0.01) | −0.36 (0.18) | −4.76% | |
Annual | 1.27 (0.45) | −0.03 (0.02) | −0.54 (0.36) | −2.36% | |
Shrubland (×104) | >65°N | 0.55 (0.38) | 0.0005 (0.04) | 0.01 (0.72) | 0.09% |
65–60°N | 6.07 (0.84) | −0.31 (0.22) | −5.58 (3.96) | −5.11% | |
60–55°N | 0.40 (0.09) | −0.02 (0.05) | −0.36 (0.90) | −5.00% | |
55–50°N | 0.18 (0.11) | −0.006 (0.02) | −0.11 (0.36) | −3.33% | |
Spring | 1.26 (0.33) | −0.06 (0.03) | −1.08 (0.54) | −4.76% | |
Summer | 5.11 (0.69) | −0.23 (0.27) | −4.14 (4.86) | −4.50% | |
Autumn | 0.81 (0.35) | −0.05 (0.02) | −0.90 (0.36) | −6.17% | |
Annual | 7.19 (1.16) | −0.03 (0.02) | −0.54 (0.36) | −0.42% |
Sub-Region | Cropland (%) | Shrubland (%) | Grassland (%) | Forest (%) | |
---|---|---|---|---|---|
Northeastern NEA | Land cover | 0.16 | 1.03 | 3.86 | 91.82 |
Fire change | 2.38 | 0.18 | 0.30 | 96.63 | |
Southwestern NEA | Land cover | 32.26 | 4.29 | 11.78 | 44.63 |
Fire change | 66.19 | 0.60 | 13.01 | 19.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, J.; Chen, X.; Cao, Y.; Chen, F. Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sens. 2022, 14, 4180. https://doi.org/10.3390/rs14174180
Tian J, Chen X, Cao Y, Chen F. Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sensing. 2022; 14(17):4180. https://doi.org/10.3390/rs14174180
Chicago/Turabian StyleTian, Jiaxin, Xiaoning Chen, Yunfeng Cao, and Feng Chen. 2022. "Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020" Remote Sensing 14, no. 17: 4180. https://doi.org/10.3390/rs14174180
APA StyleTian, J., Chen, X., Cao, Y., & Chen, F. (2022). Satellite Observational Evidence of Contrasting Changes in Northern Eurasian Wildfires from 2003 to 2020. Remote Sensing, 14(17), 4180. https://doi.org/10.3390/rs14174180