Pitted-Ground Volcanoes on Mercury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Selection of Research Objects
3. Results
3.1. Pyroclastic Deposits around Pitted-Ground Terrains
3.2. Morphology of Pitted-Ground Terrains
3.3. Pitted-Ground Volcanoes Associated with the Borealis Planitia
3.4. Pitted-Ground Volcanoes in the Raphael Crater
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kerber, L.; Head, J.W.; Solomon, S.C.; Murchie, S.L.; Blewett, D.T.; Wilson, L. Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet. Sci. Lett. 2009, 285, 263–271. [Google Scholar] [CrossRef]
- Kerber, L.; Head, J.W.; Blewett, D.T.; Solomon, S.C.; Wilson, L.; Murchie, S.L.; Robinson, M.S.; Denevi, B.W.; Domingue, D.L. The global distribution of pyroclastic deposits on Mercury: The view from MESSENGER flybys 1–3. Planet. Space Sci. 2011, 59, 1895–1909. [Google Scholar] [CrossRef]
- Besse, S.; Doressoundiram, A.; Benkhoff, J. Spectroscopic properties of explosive volcanism within the Caloris basin with MESSENGER observations. J. Geophys. Res. 2015, 120, 2102–2117. [Google Scholar] [CrossRef]
- Besse, S.; Doressoundiram, A.; Barraud, O.; Griton, L.; Cornet, T.; Muñoz, C.; Varatharajan, I.; Helbert, J. Spectral properties and physical extent of pyroclastic deposits on Mercury: Variability within selected deposits and implications for explosive volcanism. J. Geophys. Res. 2020, 125, e2018JE005879. [Google Scholar] [CrossRef]
- Goudge, T.A.; Head, J.W.; Kerber, L.; Blewett, D.T.; Denevi, B.; Domingue, D.L.; Gillis-Davis, J.J.; Gwinner, K.; Helbert, J.; Holsclaw, G.M.; et al. Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J. Geophys. Res. 2014, 119, 635–658. [Google Scholar] [CrossRef]
- Thomas, R.J.; Rothery, D.A.; Conway, S.J.; Anand, M. Hollows on mercury: Materials and mechanisms involved in their formation. Icarus 2014, 229, 221–235. [Google Scholar] [CrossRef]
- Thomas, R.J.; Rothery, D.A.; Conway, S.J.; Anand, M. Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion. Earth Planet. Sci. Lett. 2015, 431, 164–172. [Google Scholar] [CrossRef]
- Byrne, P.K.; Whitten, J.L.; Klimczak, C.; McCubbin, F.M.; Ostrach, L.R. The Volcanic Character of Mercury. In Mercury: The View after MESSENGER; Solomon, S.C., Nittler, L.R., Anderson, B.J., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 287–323. [Google Scholar]
- Kerber, L.; Besse, S.; Head, J.W.; Blewett, D.T.; Goudge, T.A. The global distribution of pyroclastic deposits on Mercury: The view from orbit. In Proceedings of the 45th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 17–21 March 2014; p. 2862. [Google Scholar]
- Thomas, R.J.; Rothery, D.A.; Conway, S.J.; Anand, M. Mechanisms of explosive volcanism on Mercury: Implications from its global distribution and morphology. J. Geophys. Res. 2014, 119, 2239–2254. [Google Scholar] [CrossRef]
- Jozwiak, L.M.; Head, J.W.; Wilson, L. Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption. Icarus 2018, 302, 191–212. [Google Scholar] [CrossRef]
- Weider, S.Z.; Nittler, L.R.; Murchie, S.L.; Peplowski, P.N.; McCoy, T.J.; Kerber, L.; Klimczak, C.; Ernst, C.M.; Goudge, T.A.; Starr, R.D.; et al. Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett. 2016, 43, 3653–3661. [Google Scholar] [CrossRef] [Green Version]
- Head, J.W.; Murchie, S.L.; Prockter, L.M.; Solomon, S.C.; Strom, R.G.; Chapman, C.R.; Watters, T.R.; Blewett, D.T.; Gillis-Davis, J.; Fassett, C.I.; et al. Evidence for intrusive activity on Mercury from the first MESSENGER flyby. Earth Planet. Sci. Lett. 2009, 285, 251–262. [Google Scholar] [CrossRef]
- Byrne, P.K.; Klimczak, C.; Şengör, A.M. The tectonic character of Mercury. In Mercury: The View after MESSENGER; Solomon, S.C., Nittler, L.R., Anderson, B.J., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 249–286. [Google Scholar]
- Izenberg, N.R.; Klima, R.L.; Murchie, S.L.; Blewett, D.T.; Holsclaw, G.M.; McClintock, W.E.; Malaret, E.; Mauceri, C.; Vilas, F.; Sprague, A.L.; et al. The low-iron, reduced surface of Mercury as seen in spectral reflectance by MESSENGER. Icarus 2014, 228, 364–374. [Google Scholar] [CrossRef]
- Murchie, S.L.; Klima, R.L.; Denevi, B.W.; Ernst, C.M.; Keller, M.R.; Domingue, D.L.; Blewett, D.T.; Chabot, N.L.; Hash, C.D.; Malaret, E.; et al. Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imaging System: Evidence for the origins of plains units and low-reflectance material. Icarus 2015, 254, 287–305. [Google Scholar] [CrossRef]
- Ngoc, N.B.; Bott, N.; Diep, P.N. Spectral properties of the surface reflectance of the northern polar region of mercury. Res. Astron. Astrophys. 2020, 20, 34. [Google Scholar] [CrossRef]
- Xiao, Z.; Xu, R.; Wang, Y.; Chang, Y.; Xu, R.; Cui, J. Recent dark pyroclastic deposits on Mercury. Geophys. Res. Lett. 2021, 48, e2021GL092532. [Google Scholar] [CrossRef]
- Thomas, R.J.; Rothery, D.A.; Conway, S.J.; Anand, M. Long-lived explosive volcanism on Mercury. Geophys. Res. Lett. 2014, 41, 6084–6092. [Google Scholar] [CrossRef]
- Klimczak, C.; Crane, K.T.; Habermann, M.A.; Byrne, P.K. The spatial distribution of Mercury’s pyroclastic activity and the relation to lithospheric weaknesses. Icarus 2018, 315, 115–123. [Google Scholar] [CrossRef]
- Brož, P.; Čadek, O.; Wright, J.; Rothery, D.A. The apparent absence of kilometer-sized pyroclastic volcanoes on Mercury: Are we looking right? Geophys. Res. Lett. 2018, 45, 12–171. [Google Scholar] [CrossRef]
- Gillis-Davis, J.J.; Blewett, D.T.; Gaskell, R.W.; Denevi, B.W.; Robinson, M.S.; Strom, R.G.; Solomon, S.C.; Sprague, A.L. Pit-floor craters on Mercury: Evidence of near-surface igneous activity. Earth Planet. Sci. Lett. 2009, 285, 243–250. [Google Scholar] [CrossRef]
- Pegg, D.L.; Rothery, D.A.; Balme, M.R.; Conway, S.J. Explosive vent sites on Mercury: Commonplace multiple eruptions and their implications. Icarus 2021, 365, 114510. [Google Scholar] [CrossRef]
- Blewett, D.T.; Chabot, N.L.; Denevi, B.W.; Ernst, C.M.; Head, J.W.; Izenberg, N.R.; Murchie, S.L.; Solomon, S.C.; Nittler, L.R.; McCoy, T.J.; et al. Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 2011, 333, 1856–1859. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xiao, Z.; Chang, Y.; Cui, J. Lost volatiles during the formation of hollows on Mercury. J. Geophys. Res. 2014, 125, e2020JE006559. [Google Scholar] [CrossRef]
- Rothery, D.A.; Massironi, M.; Alemanno, G.; Barraud, O.; Besse, S.; Bott, N.; Brunetto, R.; Bunce, E.; Byrne, P.; Capaccioni, F.; et al. Rationale for BepiColombo studies of Mercury’s surface and composition. Space Sci. Rev. 2020, 216, 66. [Google Scholar] [CrossRef]
- Bruno, B.C.; Fagents, S.A.; Thordarson, T.; Baloga, S.M.; Pilger, E. Clustering within rootless cone groups on Iceland and Mars: Effect of nonrandom processes. J. Geophys. Res. 2004, 109, E07009. [Google Scholar] [CrossRef]
- Gilbertson, M.A.; Taylor, A.; Mitchell, S.J.; Rust, A.C. A fluidisation mechanism for secondary hydroeruptions in py-roclastic flow deposits. Front. Earth Sci. 2020, 8, 324. Available online: https://www.frontiersin.org/articles/10.3389/feart.2020.00324/ful (accessed on 2 September 2020). [CrossRef]
- Solomon, S.C.; McNutt, R.L.; E Gold, R.; Acuña, M.H.; Baker, D.N.; Boynton, W.V.; Chapman, C.R.; Cheng, A.F.; Gloeckler, G.; Iii, J.W.H.; et al. The MESSENGER mission to Mercury: Scientific objectives and implementation. Planet. Space Sci. 2001, 49, 1445–1465. [Google Scholar] [CrossRef]
- Hawkins, S.E.; Boldt, J.D.; Darlington, E.H.; Espiritu, R.; Gold, R.E.; Gotwols, B.; Grey, M.P.; Hash, C.D.; Hayes, J.R.; Jaskulek, S.E.; et al. The Mercury dual imaging system on the MESSENGER spacecraft. Space Sci. Rev. 2007, 131, 247–338. [Google Scholar] [CrossRef]
- Denevi, B.W.; Chabot, N.L.; Murchie, S.L.; Becker, K.J.; Blewett, D.T.; Domingue, D.L.; Ernst, C.M.; Hash, C.D.; Hawkins, S.E.; Keller, M.R.; et al. Calibration, projection, and final image products of MESSENGER’s Mercury Dual Imaging System. Space Sci. Rev. 2018, 214, 2. [Google Scholar] [CrossRef]
- Zuber, M.T.; Smith, D.E.; Phillips, R.J.; Solomon, S.C.; Neumann, G.A.; Hauck, S.A.; Peale, S.J.; Barnouin, O.S.; Head, J.W.; Johnson, C.L.; et al. Topography of the northern hemisphere of Mercury from MESSENGER laser altimetry. Science 2012, 336, 217–220. [Google Scholar] [CrossRef]
- Fassett, C.I. Ames stereo pipeline-derived digital terrain models of Mercury from MESSENGER stereo imaging. Planet Space Sci. 2016, 134, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Tenthoff, M.; Wohlfarth, K.; Wöhler, C. High resolution digital terrain models of Mercury. Remote Sens. 2020, 12, 3989. [Google Scholar] [CrossRef]
- McClintock, W.E.; Lankton, M.R. The Mercury atmospheric and surface composition spectrometer for the MESSENGER mission. Space Sci. Rev. 2007, 131, 481–521. [Google Scholar] [CrossRef]
- Genova, A.; Goossens, S.; Mazarico, E.; Lemoine, F.G.; Neumann, G.A.; Kuang, W.; Sabaka, T.J.; Hauck, I.S.A.; Smith, D.E.; Solomon, S.C.; et al. Geodetic evidence that Mercury has a solid inner core. Geophys. Res. Lett. 2019, 46, 3625–3633. [Google Scholar] [CrossRef] [PubMed]
- Beuthe, M.; Charlier, B.; Namur, O.; Rivoldini, A.; Van Hoolst, T. Mercury’s crustal thickness correlates with lateral variations in mantle melt production. Geophys. Res. Lett. 2020, 47, e2020GL087261. [Google Scholar] [CrossRef]
- Murchie, S.L.; Klima, R.L.; Izenberg, N.R.; Domingue, D.L.; Blewett, D.T.; Helbert, J. Spectral Reflectance Constraints on the Composition and Evolution of Mercury’s Surface. In Mercury: The View after MESSENGER; Solomon, S.C., Nittler, L.R., Anderson, B.J., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 191–216. [Google Scholar]
- Blewett, D.T.; Ernst, C.M.; Murchie, S.L.; Vilas, F. Mercury’s hollows. In Mercury: The View after MESSENGER; Solomon, S.C., Nittler, L.R., Anderson, B.J., Eds.; Cambridge University Press: New York, NY, USA, 2018; pp. 324–345. [Google Scholar]
- Byrne, P.K.; Klimczak, C.; Williams, D.A.; Hurwitz, D.M.; Solomon, S.C.; Head, J.W.; Preusker, F.; Oberst, J. An assemblage of lava flow features on Mercury. J. Geophys. Res. 2013, 118, 1303–1322. [Google Scholar] [CrossRef]
- Head, J.W.; Chapman, C.R.; Strom, R.G.; Fassett, C.I.; Denevi, B.W.; Blewett, D.T.; Ernst, C.M.; Watters, T.R.; Solomon, S.C.; Murchie, S.L.; et al. Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science 2011, 333, 1853–1856. [Google Scholar] [CrossRef]
- Wang, Y.; Xiao, Z.; Chang, Y.; Xu, R.; Cui, J. Short-Term and Global-Wide Effusive Volcanism on Mercury Around 3.7 Ga. Geophys. Res. Lett. 2021, 48, e2021GL094503. [Google Scholar] [CrossRef]
- Spudis, P.D.; Guest, J.E. Stratigraphy and geologic history of Mercury. In Mercury; Vilas, F., Chapman, C.R., Matthews, M.S., Eds.; University of Arizona Press: Tucson, AZ, USA, 1988; pp. 118–164. [Google Scholar]
- Banks, M.E.; Xiao, Z.; Braden, S.E.; Marchi, S.; Chapman, C.R.; Barlow, N.G.; Fassett, C.I. Revised age constraints for Mercury’s Kuiperian and Mansurian systems. In Proceedings of the 47th Lunar and Planetary Science Conference, The Woodlands, TX, USA, 21–25 March 2016; p. 2943. [Google Scholar]
- Takada, A. The influence of regional stress and magmatic input on styles of monogenetic and polygenetic volcanism. J. Geophys. Res. 1994, 99, 13563–13573. [Google Scholar] [CrossRef]
- Németh, K.; Kereszturi, G. Monogenetic volcanism: Personal views and discussion. Int. J. Earth Sci. 2015, 104, 2131–2146. [Google Scholar] [CrossRef]
- Kereszturi, G.; Németh, K. Monogenetic basaltic volcanoes: Genetic classification, growth, geomorphology and degradation. In Updates in Volcanology–New Advances in Understanding Volcanic Systems; Nemeth, K., Ed.; Intech Open: London, UK, 2012; pp. 3–88. [Google Scholar]
- Richardson, J.A.; Bleacher, J.E.; Connor, C.B.; Glaze, L.S. Small Volcanic Vents of the Tharsis Volcanic Province, Mars. J. Geophys. Res. Planets 2021, 126, e2020JE006620. [Google Scholar] [CrossRef]
- Kiyosugi, K.; Connor, C.B.; Zhao, D.; Connor, L.J.; Tanaka, K. Relationships between volcano distribution, crustal structure, and P-wave tomography: An example from the Abu Monogenetic Volcano Group, SW Japan. Bull. Volcanol. 2010, 72, 331–340. [Google Scholar] [CrossRef]
- Padovan, S.; Tosi, N.; Plesa, A.C.; Ruedas, T. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 2017, 8, 1945. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak, L.M.; Head, J.W., III; Neumann, G.A.; Wilson, L. Observational constraints on the identification of shallow lunar magmatism: Insights from floor-fractured craters. Icarus 2017, 283, 224–231. [Google Scholar] [CrossRef]
- Imperi, L.; Iess, L.; Mariani, M.J. An analysis of the geodesy and relativity experiments of BepiColombo. Icarus 2018, 301, 9–25. [Google Scholar] [CrossRef]
Longitude (°) | Latitude (°) | Location | Association with Impact Crater | Reference |
---|---|---|---|---|
−74.40 | −21.00 | East of Raphael crater | yes | a c |
−51.3 | 7.4 | Chaikovskij crater | yes | c |
−31.70 | −58.09 | Pampu Facula | yes | c |
−31.43 | −53.86 | Southwest of Sarpa Facula | yes | c |
−4.20 | 26.20 | Canova | yes | a c |
133.07 | 72.82 | Borealis Planitia | no | a b |
−52.56 | −59.16 | Khansa crater | yes | |
−90.10 | 50.57 | West of Sholem Aleichem crater | yes | a |
−37.8 | 0.40 | Southwest of Dominici crater | yes | b |
−65.58 | −58.70 | Northwest of Rabelais crater | yes | a |
−70.17 | −48.25 | Northwest of Smetana crater | yes | a |
92.32 | −37.33 | Zmija Facula | yes | a |
123.96 | 58.61 | Lava channel | no | a |
179.5 | −40.85 | Southeast of Liang K’ai crater | yes | b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, R.; Xiao, Z.; Wang, Y.; Xu, R. Pitted-Ground Volcanoes on Mercury. Remote Sens. 2022, 14, 4164. https://doi.org/10.3390/rs14174164
Xu R, Xiao Z, Wang Y, Xu R. Pitted-Ground Volcanoes on Mercury. Remote Sensing. 2022; 14(17):4164. https://doi.org/10.3390/rs14174164
Chicago/Turabian StyleXu, Ru, Zhiyong Xiao, Yichen Wang, and Rui Xu. 2022. "Pitted-Ground Volcanoes on Mercury" Remote Sensing 14, no. 17: 4164. https://doi.org/10.3390/rs14174164
APA StyleXu, R., Xiao, Z., Wang, Y., & Xu, R. (2022). Pitted-Ground Volcanoes on Mercury. Remote Sensing, 14(17), 4164. https://doi.org/10.3390/rs14174164