Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roháč, J.; Scaringi, G.; Boháč, J.; Kycl, P.; Najser, J. Revisiting Strength Concepts and Correlations with Soil Index Properties: Insights from the Dobkovičky Landslide in Czech Republic. Landslides 2020, 17, 597–614. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Güntner, A.; Hübner, C.; Kusche, J.; Jonard, F.; Vey, S.; Vereecken, H. Emerging Methods for Noninvasive Sensing of Soil Moisture Dynamics from Field to Catchment Scale: A Review. WIREs Water 2015, 2, 635–647. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, A.Y.M.; Biswas, R.K.; Chowdhury, A.I.; Billah, S.M. Modeling Soil Salinity Using Direct and Indirect Measurement Techniques: A Comparative Analysis. Environ. Dev. 2019, 29, 67–80. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G.; Blahůt, J.; Melis, M.T.; Funedda, A.; Da Pelo, S.; Erbì, I.; Deiana, G.; Meloni, M.A.; Cocco, F. An Infrared Thermography Approach to Evaluate the Strength of a Rock Cliff. Remote Sens. 2021, 13, 1265. [Google Scholar] [CrossRef]
- Scaringi, G.; Loche, M. A Thermo-Hydro-Mechanical Approach to Soil Slope Stability under Climate Change. Geomorphology 2022, 401, 108108. [Google Scholar] [CrossRef]
- Mineo, S.; Caliò, D.; Pappalardo, G. UAV-Based Photogrammetry and Infrared Thermography Applied to Rock Mass Survey for Geomechanical Purposes. Remote Sens. 2022, 14, 473. [Google Scholar] [CrossRef]
- Stead, D.; Donati, D.; Wolter, A.; Sturzenegger, M. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf. 2019, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Melis, M.T.; Da Pelo, S.; Erbì, I.; Loche, M.; Deiana, G.; Demurtas, V.; Meloni, M.A.; Dessì, F.; Funedda, A.; Scaioni, M.; et al. Thermal Remote Sensing from UAVs: A Review on Methods in Coastal Cliffs Prone to Landslides. Remote Sens. 2020, 12, 1971. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. The Use of Infrared Thermography for Porosity Assessment of Intact Rock. Rock Mech. Rock Eng. 2016, 49, 3027–3039. [Google Scholar] [CrossRef]
- Mitchell, J.K.; Soga, K. Fundamentals of Soil Behavior; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Scaringi, G.; Fan, X.; Xu, Q.; Liu, C.; Ouyang, C.; Domènech, G.; Yang, F.; Dai, L. Some Considerations on the Use of Numerical Methods to Simulate Past Landslides and Possible New Failures: The Case of the Recent Xinmo Landslide (Sichuan, China). Landslides 2018, 15, 1359–1375. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Lu, Y.; Horton, R.; Zhang, X.; Ren, T. Accounting for Soil Porosity Improves a Thermal Inertia Model for Estimating Surface Soil Water Content. Remote Sens. Environ. 2018, 212, 79–89. [Google Scholar] [CrossRef]
- Loche, M.; Scaringi, G.; Yunus, A.P.; Catani, F.; Tanyaş, H.; Frodella, W.; Fan, X.; Lombardo, L. Surface Temperature Controls the Pattern of Post-Earthquake Landslide Activity. Sci. Rep. 2022, 12, 988. [Google Scholar] [CrossRef]
- Eccel, E.; Arman, G.; Zottele, F.; Gioli, B. Thermal Infrared Remote Sensing for High Resolution Minimum Temperature Mapping. Ital. J. Agrometeorol. 2008, 13, 52–61. [Google Scholar]
- Reichenbach, P.; Rossi, M.; Malamud, B.D.; Mihir, M.; Guzzetti, F. A Review of Statistically-Based Landslide Susceptibility Models. Earth-Sci. Rev. 2018, 180, 60–91. [Google Scholar] [CrossRef]
- Loche, M.; Alvioli, M.; Marchesini, I.; Bakka, H.; Lombardo, L. Landslide Susceptibility Maps of Italy: Lesson Learnt from Dealing with Multiple Landslide Types and the Uneven Spatial Distribution of the National Inventory. Earth-Sci. Rev. 2022, 232, 104125. [Google Scholar] [CrossRef]
- Shannon, H.R.; Sigda, J.M.; Van Dam, R.L.; Hendrickx, J.M.; McLemore, V.T. Thermal Camera Imaging of Rock Piles at the Questa Molybdenum Mine, Questa, New Mexico. In Proceedings of the 2005 National Meeting of the America Society of Mining and Reclamation, ASMR, Lexington, KY, USA, 19–23 June 2005; pp. 1015–1028. [Google Scholar]
- Prendes-Gero, M.B.; Suárez-Domínguez, F.J.; González-Nicieza, C.; Álvarez-Fernández, M.I. Infrared Thermography Methodology Applied to Detect Localized Rockfalls in Self-Supporting Underground Mines. In proceedings of the ISRM International Symposium-EUROCK 2013, Wrocław, Poland, 23–26 September 2013; OnePetro: Richardson, TX, USA, 2013. [Google Scholar]
- Teza, G.; Marcato, G.; Castelli, E.; Galgaro, A. IRTROCK: A MATLAB Toolbox for Contactless Recognition of Surface and Shallow Weakness of a Rock Cliff by Infrared Thermography. Comput. Geosci. 2012, 45, 109–118. [Google Scholar]
- Kuenzer, C.; Deck, S. Thermal Infrared Remote Sensing: Sensors, Methods, Applications; Springer: Dordrecht, The Netherlands, 2013; ISBN 978-94-007-6638-9. [Google Scholar]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Di Maria, G. Integrated Geostructural, Seismic and Infrared Thermography Surveys for the Study of an Unstable Rock Slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar]
- Racek, O.; Blahůt, J.; Hartvich, F. Observation of the Rock Slope Thermal Regime, Coupled with Crackmeter Stability Monitoring: Initial Results from Three Different Sites in Czechia (Central Europe). Geosci. Instrum. Methods Data Syst. 2021, 10, 203–218. [Google Scholar] [CrossRef]
- Hudson, R.D. Infrared System Engineering; Wiley-Interscience: New York, NY, USA, 1969; Volume 1. [Google Scholar]
- Frodella, W.; Lazzeri, G.; Moretti, S.; Keizer, J.; Verheijen, F.G. Applying Infrared Thermography to Soil Surface Temperature Monitoring: Case Study of a High-Resolution 48 h Survey in a Vineyard (Anadia, Portugal). Sensors 2020, 20, 2444. [Google Scholar]
- Martino, S.; Mazzanti, P. Integrating Geomechanical Surveys and Remote Sensing for Sea Cliff Slope Stability Analysis: The Mt. Pucci Case Study (Italy). Nat. Hazards Earth Syst. Sci. 2014, 14, 831–848. [Google Scholar]
- Mazzanti, P.; Brunetti, A.; Bretschneider, A. A New Approach Based on Terrestrial Remote-Sensing Techniques for Rock Fall Hazard Assessment. In Modern Technologies for Landslide Monitoring and Prediction; Springer: Berlin/Heidelberg, Germany, 2015; pp. 69–87. [Google Scholar]
- Blackett, M. An Overview of Infrared Remote Sensing of Volcanic Activity. J. Imaging 2017, 3, 13. [Google Scholar]
- Oppenheimer, C.; Yirgu, G. Thermal Imaging of an Active Lava Lake: Erta’Ale Volcano, Ethiopia. Int. J. Remote Sens. 2002, 23, 4777–4782. [Google Scholar]
- Lagios, E.; Vassilopoulou, S.; Sakkas, V.; Dietrich, V.; Damiata, B.N.; Ganas, A. Testing Satellite and Ground Thermal Imaging of Low-Temperature Fumarolic Fields: The Dormant Nisyros Volcano (Greece). ISPRS J. Photogramm. Remote Sens. 2007, 62, 447–460. [Google Scholar]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar]
- Harvey, M.C.; Rowland, J.V.; Luketina, K.M. Drone with Thermal Infrared Camera Provides High Resolution Georeferenced Imagery of the Waikite Geothermal Area, New Zealand. J. Volcanol. Geotherm. Res. 2016, 325, 61–69. [Google Scholar]
- de Lima, J.L.; Abrantes, J.R.; Silva Jr, V.P.; Montenegro, A.A. Prediction of Skin Surface Soil Permeability by Infrared Thermography: A Soil Flume Experiment. Quant. InfraRed Thermogr. J. 2014, 11, 161–169. [Google Scholar]
- Morello, R. Potentialities and Limitations of Thermography to Assess Landslide Risk. Measurement 2018, 116, 658–668. [Google Scholar]
- Laufek, F.; Hanusová, I.; Svoboda, J.; Vašíček, R.; Najser, J.; Koubová, M.; Čurda, M.; Pticen, F.; Vaculíková, L.; Sun, H. Mineralogical, Geochemical and Geotechnical Study of BCV 2017 Bentonite—The Initial State and the State Following Thermal Treatment at 200 °C. Minerals 2021, 11, 871. [Google Scholar]
- Hong, Y.; Wang, L.Z.; Ng, C.W.; Yang, B. Effect of Initial Pore Pressure on Undrained Shear Behaviour of Fine-Grained Gassy Soil. Can. Geotech. J. 2017, 54, 1592–1600. [Google Scholar]
- Duque, J.; Ochmański, M.; Mašín, D.; Hong, Y.; Wang, L. On the Behavior of Monopiles Subjected to Multiple Episodes of Cyclic Loading and Reconsolidation in Cohesive Soils. Comput. Geotech. 2021, 134, 104049. [Google Scholar] [CrossRef]
- Duque, J. Contributions to the Experimental Investigation and Numerical Description of Soil Cyclic Behavior; Charles University: Prague, Czech Republic, 2021. [Google Scholar]
- Pivovarník, M.; Pikl, M.; Frouz, J.; Zemek, F.; Kopačková, V.; Notesco, G.; Ben Dor, E. A Spectral Emissivity Library of Spoil Substrates. Data 2016, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- ASTM D7263-21; Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. ASTM International: West Conshohocken, PA, USA, 2021; Volume 4.
- Pappalardo, G.; Mineo, S.; Marchese, G. Effects of Cubical Specimen Sizing on the Uniaxial Compressive Strength of Etna Volcanic Rocks (Italy). Ital. J. Eng. Geol. Environ. 2013, 10, 45–54. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S. Investigation on the Mechanical Attitude of Basaltic Rocks from Mount Etna through InfraRed Thermography and Laboratory Tests. Constr. Build. Mater. 2017, 134, 228–235. [Google Scholar] [CrossRef]
- de Lima, J.L.M.P.; Abrantes, J.R.C.B.; Silva, V.P.; de Lima, M.I.P.; Montenegro, A.A.A. Mapping Soil Surface Macropores Using Infrared Thermography: An Exploratory Laboratory Study. Sci. World J. 2014, 2014, e845460. [Google Scholar] [CrossRef] [Green Version]
- Frodella, W.; Gigli, G.; Morelli, S.; Lombardi, L.; Casagli, N. Landslide Mapping and Characterization through Infrared Thermography (IRT): Suggestions for a Methodological Approach from Some Case Studies. Remote Sens. 2017, 9, 1281. [Google Scholar] [CrossRef] [Green Version]
- Wood, D.M. Soil Behaviour and Critical State Soil Mechanics, 1st ed.; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0-521-33249-1. [Google Scholar]
- Wu, T.H. Geotechnical Properties of Glacial Lake Clays. J. Soil Mech. Found. Div. 1958, 84. [Google Scholar] [CrossRef]
Material | Compaction Level (Tons) | Critical State Friction Angle (φcr) | Porosity Statistics | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MIN | Q1 | MED | Q3 | MAX | MEAN | RA | SD | |||
Kaolin | 5 | 23.5 | 0.247 | 0.255 | 0.269 | 0.341 | 0.372 | 0.297 | 0.125 | 0.050 |
3 | 23.5 | 0.303 | 0.309 | 0.329 | 0.343 | 0.365 | 0.330 | 0.062 | 0.023 | |
1 | 23.5 | 0.442 | 0.179 | 0.458 | 0.459 | 0.462 | 0.456 | 0.020 | 0.007 | |
Bentonite | 5 | 15.8 | 0.175 | 0.179 | 0.241 | 0.248 | 0.260 | 0.221 | 0.084 | 0.036 |
3 | 15.8 | 0.270 | 0.276 | 0.293 | 0.295 | 0.313 | 0.290 | 0.043 | 0.015 | |
1 | 15.8 | 0.392 | 0.392 | 0.400 | 0.409 | 0.416 | 0.402 | 0.024 | 0.010 | |
Sand | 5 | 34.9 | 0.802 | 0.804 | 0.804 | 0.807 | 0.809 | 0.805 | 0.007 | 0.003 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loche, M.; Scaringi, G.; Blahůt, J.; Hartvich, F. Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering. Remote Sens. 2022, 14, 4067. https://doi.org/10.3390/rs14164067
Loche M, Scaringi G, Blahůt J, Hartvich F. Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering. Remote Sensing. 2022; 14(16):4067. https://doi.org/10.3390/rs14164067
Chicago/Turabian StyleLoche, Marco, Gianvito Scaringi, Jan Blahůt, and Filip Hartvich. 2022. "Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering" Remote Sensing 14, no. 16: 4067. https://doi.org/10.3390/rs14164067
APA StyleLoche, M., Scaringi, G., Blahůt, J., & Hartvich, F. (2022). Investigating the Potential of Infrared Thermography to Inform on Physical and Mechanical Properties of Soils for Geotechnical Engineering. Remote Sensing, 14(16), 4067. https://doi.org/10.3390/rs14164067