Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs
Abstract
:1. Introduction
- re-enforce the Italian know-how on DOAS/MAX-DOAS techniques, following the legacy of the CNR-ISAC institute;
- re-enforce the observational potential of the Po Valley infrastructure through the acquisition of a ground-based remote sensing instrument compliant with ESA reference standards that can be used for both satellite validation and scientific studies of air quality in one of the most polluted European regions.
2. Materials and Methods
2.1. Ground-Based Instruments
2.1.1. SkySpec-2D
2.1.2. TROPOGAS
2.1.3. Pandora
2.2. Analysis Method
2.2.1. DOAS Fit for SCDs Estimate
2.2.2. Air Mass Factors Simulation
2.2.3. Reference Contribution Estimate
2.2.4. Filtering of Data Affected by Clouds
2.3. Bologna Inter-Comparison Campaign
2.4. BAQUNIN Inter-Comparison Campaign
2.5. Correlative Data
2.5.1. Pandora Data
2.5.2. TROPOMI and OMI Satellite Data
3. Results
3.1. Bologna Inter-Comparison Campaign
3.2. BAQUNIN Inter-Comparison Campaign
3.3. Routine Measurements of SkySpec-2D at SPC
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
NO Vis | Ref. Cross Section | |
---|---|---|
Calibration | 455–495 nm (6 points) | |
spectral range | ||
Retrieval | 460–490 nm | |
spectral range | ||
Considered XS | NO 298 K | from Van Daele [46] |
NO 220 K | from Van Daele [46] | |
(orto. to NO 298 K) | ||
O 223 K | from Bogumil [47] | |
O | from Herman [48] | |
Ring | computed according to [49] | |
O 293 K | from Bogumil [47] | |
(orto. to O 223 K) | ||
Glyoxal | from Volkamer [50] | |
HO | from Herman [48] | |
Other fits | Polynomial deg. 5 | |
linear offset order 1 |
NO Vis | Ref. Cross Section | |
---|---|---|
Calibration | 420–500 nm (6 points) | |
spectral range | ||
Retrieval | 430–490 nm | |
spectral range | ||
Considered XS | (a) NO 298 K | from Van Daele [46] |
(a) NO 220 K | from Van Daele [46] | |
(a) (orto. to NO 298 K) | ||
(b) NO 254.5 K | from Van Daele [46] | |
O 223 K | from Bogumil [47] | |
O | from Herman [48] | |
Ring | computed according to [49] | |
O 293 K | from Bogumil [47] | |
(orto. to O 223 K) | ||
Glyoxal | from Volkamer [50] | |
HO | from Herman [48] | |
Other fits | Polynomial deg. 5 | |
linear offset order 1 |
References
- Cesaroni, G.; Forastiere, F.; Stafoggia, M.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; de Faire, U.; Erbel, R.; Eriksen, K.T.; et al. Long term exposure to ambient air pollution and incidence of acute coronary events: Prospective cohort study and meta-analysis in 11 European cohorts from the ESCAPE Project. BMJ-Br. Med. J. 2014, 348, f7412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raaschou-Nielsen, O.; Andersen, Z.J.; Beelen, R.; Samoli, E.; Stafoggia, M.; Weinmayr, G.; Hoffmann, B.; Fischer, P.; Nieuwenhuijsen, M.J.; Brunekreef, B.; et al. Air pollution and lung cancer incidence in 17 European cohorts: Prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). Lancet Oncol. 2013, 14, 813–822. [Google Scholar] [CrossRef]
- Varotsos, C.A.; Cracknell, A.P. Remote Sensing Letters contribution to the success of the Sustainable Development Goals-UN 2030 agenda. Remote Sens. Lett. 2020, 11, 715–719. [Google Scholar] [CrossRef]
- Taurino, E.; Bernetti, A.; Caputo, A.; Cordella, M.; De Lauretis, R.; D’Elia, I.; Di Cristofaro, E.; Gagna, A.; Gonella, B.; Moricci, F.; et al. Italian Emission Inventory 1990–2018, Informative Inventory Report; Technical Report; Institute for Environmental Protection and Research: Rome, Italy, 2020; ISBN 978-88-448-0994-2. Available online: https://www.isprambiente.gov.it/files2020/pubblicazioni/rapporti/Rapporto_319_2020.pdf (accessed on 5 April 2022).
- Varotsos, C.; Christodoulakis, J.; Kouremadas, G.A.; Fotaki, E.F. The signature of the coronavirus lockdown in air pollution in Greece. Water Air Soil Pollut. 2021, 232, 119. [Google Scholar] [CrossRef]
- Filonchyk, M.; Hurynovich, V.; Yan, H. Impact of COVID-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 2021, 198, 110454. [Google Scholar] [CrossRef] [PubMed]
- Bassani, C.; Vichi, F.; Esposito, G.; Montagnoli, M.; Giusto, M.; Ianniello, A. Nitrogen dioxide reductions from satellite and surface observations during COVID-19 mitigation in Rome (Italy). Environ. Sci. Pollut. Res. 2021, 28, 22981–23004. [Google Scholar] [CrossRef] [PubMed]
- Campanelli, M.; Iannarelli, A.M.; Mevi, G.; Casadio, S.; Diemoz, H.; Finardi, S.; Dinoi, A.; Castelli, E.; di Sarra, A.; Di Bernardino, A.; et al. A wide-ranging investigation of the COVID-19 lockdown effects on the atmospheric composition in various Italian urban sites (AER—LOCUS). Urban Clim. 2021, 39, 100954. [Google Scholar] [CrossRef]
- Masiello, G.; Cersosimo, A.; Falabella, F.; Mastro, P.; Pasquariello, P.; Serio, C.; Venafra, S. Assessment of air quality with TROPOMI during COVID-19 pandemic: NO2 over the Po valley. In Proceedings of the Remote Sensing of Clouds and the Atmosphere XXVI, Online, 13–18 September 2021; Volume 11859, pp. 1–10. [Google Scholar] [CrossRef]
- Filippini, T.; Rothman, K.J.; Goffi, A.; Ferrari, F.; Maffeis, G.; Orsini, N.; Vinceti, M. Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Sci. Total Environ. 2020, 739, 140278. [Google Scholar] [CrossRef]
- Pommereau, J.P.; Goutail, F. Stratospheric O3 and NO2 observations at the Southern Polar Circle in summer and fall 1988. Geophys. Res. Lett. 2000, 15, 895. [Google Scholar] [CrossRef]
- Chen, D.; Zhou, B.; Beirle, S.; Chen, L.M.; Wagner, T. Tropospheric NO2 column densities deduced from zenith-sky DOAS measurements in Shanghai, China, and their application to satellite validation. Atmos. Chem. Phys. 2009, 9, 3641–3662. [Google Scholar] [CrossRef] [Green Version]
- Verhoelst, T.; Compernolle, S.; Pinardi, G.; Lambert, J.C.; Eskes, H.J.; Eichmann, K.U.; Fjaeraa, A.M.; Granville, J.; Niemeijer, S.; Cede, A.; et al. Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks. Atmos. Meas. Tech. 2021, 14, 481–510. [Google Scholar] [CrossRef]
- Dimitropoulou, E.; Hendrick, F.; Pinardi, G.; Friedrich, M.M.; Merlaud, A.; Tack, F.; De Longueville, H.; Fayt, C.; Hermans, C.; Laffineur, Q.; et al. Validation of TROPOMI tropospheric NO2 columns using dual-scan multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements in Uccle, Brussels. Atmos. Meas. Tech. 2020, 13, 5165–5191. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Wang, P.; Rakitin, V. Comparison and Validation of TROPOMI and OMI NO2 Observations over China. Atmosphere 2020, 11, 636. [Google Scholar] [CrossRef]
- Donner, S.; Kuhn, J.; Van Roozendael, M.; Bais, A.; Beirle, S.; Boesch, T.; Bognar, K.; Bruchkouski, I.; Chan, K.L.; Doerner, S.; et al. Evaluating different methods for elevation calibration of MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) instruments during the CINDI-2 campaign. Atmos. Meas. Tech. 2020, 13, 685–712. [Google Scholar] [CrossRef] [Green Version]
- Friess, U.; Beirle, S.; Bonilla, L.A.; Boesch, T.; Friedrich, M.M.; Hendrick, F.; Piters, A.; Richter, A.; van Roozendael, M.; Rozanov, V.V.; et al. Intercomparison of MAX-DOAS vertical profile retrieval algorithms: Studies using synthetic data. Atmos. Meas. Tech. 2019, 12, 2155–2181. [Google Scholar] [CrossRef] [Green Version]
- Heckel, A.; Richter, A.; Tarsu, T.; Wittrock, F.; Hak, C.; Pundt, I.; Junkermann, W.; Burrows, J. MAX-DOAS measurements of formaldehyde in the Po-Valley. Atmos. Chem. Phys. 2005, 5, 909–918. [Google Scholar] [CrossRef] [Green Version]
- Masieri, S.; Bortoli, D.; Petritoli, A.; Kostadinov, I.; Premuda, M.; Ravegnani, F.; Carnevale, C.; Pisoni, E.; Volta, M.; Giovanelli, G. Tropospheric profile of NO2 over the Po Valley measured with scan DOAS spectrometer. In Proceedings of the Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX, Berlin, Germany, 31 August–3 September 2009; Volume 7478, pp. 657–666. [Google Scholar] [CrossRef]
- Castelli, E.; Pettinari., P.; Papandrea, E.; Cristofanelli, P.; Busetto, M.; Fratticioli, C.; Valeri, M. QA4EO DOAS-BO: Towards a new FRM4DOAS site in the Po Valley. In Proceedings of the ATMOS 2021, Online, 22–26 November 2021. [Google Scholar]
- Iannarelli, A.M.; Bernardino, A.D.; Casadio, S.; Bassani, C.; Cacciani, M.; Campanelli, M.; Casasanta, G.; Cadau, E.; Diémoz, H.; Mevi, G.; et al. The Boundary Layer Air Quality-Analysis Using Network of Instruments (BAQUNIN) Supersite for Atmospheric Research and Satellite Validation over Rome Area. Bull. Am. Meteorol. Soc. 2022, 103, E599–E618. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; McMullan, K.; Forster, H.; de Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; de Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Levelt, P.; Van den Oord, G.; Dobber, M.; Malkki, A.; Visser, H.; de Vries, J.; Stammes, P.; Lundell, J.; Saari, H. The Ozone Monitoring Instrument. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1093–1101. [Google Scholar] [CrossRef]
- Kreher, K.; Van Roozendael, M.; Hendrick, F.; Apituley, A.; Dimitropoulou, E.; Friess, U.; Richter, A.; Wagner, T.; Lampel, J.; Abuhassan, N.; et al. Intercomparison of NO2, O-4, O-3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-visible spectrometers during CINDI-2. Atmos. Meas. Tech. 2020, 13, 2169–2208. [Google Scholar] [CrossRef]
- Bortoli, D.; Silva, A.M.; Giovanelli, G. A new multipurpose UV-Vis spectrometer for air quality monitoring and climatic studies. Int. J. Remote Sens. 2010, 31, 705–725. [Google Scholar] [CrossRef]
- Premuda, M.; Masieri, S.; Bortoli, D.; Kostadinov, I.; Petritoli, A.; Giovanelli, G. Evaluation of vessel emissions in a lagoon area with ground based Multi axis DOAS measurements. Atmos. Environ. 2011, 45, 5212–5219. [Google Scholar] [CrossRef]
- Herman, J.; Cede, A.; Spinei, E.; Mount, G.; Tzortziou, M.; Abuhassan, N. NO2 column amounts from ground-based Pandora and MFDOAS spectrometers using the direct-sun DOAS technique: Intercomparisons and application to OMI validation. J. Geophys. Res.-Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Platt, U.; Stutz, J. Differential Optical Absorption Spectroscopy (DOAS)—Principles and Applications; Springer Science & Business Media: Berlin, Germany, 2008; Volume 15. [Google Scholar] [CrossRef] [Green Version]
- Rozanov, V.; Buchwitz, M.; Eichmann, K.; de Beek, R.; Burrows, J. SCIATRAN—A new radiative transfer model for geophysical applications in the 240–2400 nm spectral region: The pseudo-spherical version. Adv. Space Res. 2002, 29, 1831–1835. [Google Scholar]
- Wagner, T.; Burrows, J.; Deutschmann, T.; Dix, B.; Von Friedeburg, C.; Frieß, U.; Hendrick, F.; Heue, K.P.; Irie, H.; Iwabuchi, H.; et al. Comparison of box-air-mass-factors and radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) geometries calculated from different UV/visible radiative transfer models. Atmos. Chem. Phys. 2007, 7, 1809–1833. [Google Scholar] [CrossRef] [Green Version]
- Hendrick, F.; Van Roozendael, M.; Kylling, A.; Petritoli, A.; Rozanov, A.; Sanghavi, S.; Schofield, R.; Von Friedeburg, C.; Wagner, T.; Wittrock, F.; et al. Intercomparison exercise between different radiative transfer models used for the interpretation of ground-based zenith-sky and multi-axis DOAS observations. Atmos. Chem. Phys. 2006, 6, 93–108. [Google Scholar] [CrossRef] [Green Version]
- Wagner, T.; Von Friedeburg, C.; Wenig, M.; Otten, C.; Platt, U. UV-visible observations of atmospheric O4 absorptions using direct moonlight and zenith-scattered sunlight for clear-sky and cloudy sky conditions. J. Geophys. Res. Atmos. 2002, 107, AAC-3. [Google Scholar] [CrossRef]
- Spinei, E.; Cede, A.; Swartz, W.H.; Herman, J.; Mount, G.H. The use of NO2 absorption cross section temperature sensitivity to derive NO2 profile temperature and stratospheric-tropospheric column partitioning from visible direct-sun DOAS measurements. Atmos. Meas. Tech. 2014, 7, 4299–4316. [Google Scholar] [CrossRef] [Green Version]
- Cede, A. Manual for Blick Software Suite 1.7. December 2019, Issue 1, Luftblick og, Mutters, Austria, Version 11. Available online: https://www.pandonia-global-network.org/wp-content/uploads/2019/11/BlickSoftwareSuite_Manual_v1-7.pdf (accessed on 22 November 2021).
- Judd, L.M.; Al-Saadi, J.A.; Szykman, J.J.; Valin, L.C.; Janz, S.J.; Kowalewski, M.G.; Eskes, H.J.; Veefkind, J.P.; Cede, A.; Mueller, M.; et al. Evaluating Sentinel-5P TROPOMI tropospheric NO2 column densities with airborne and Pandora spectrometers near New York City and Long Island Sound. Atmos. Meas. Tech. 2020, 13, 6113–6140. [Google Scholar] [CrossRef]
- Zhao, X.; Griffin, D.; Fioletov, V.; McLinden, C.; Cede, A.; Tiefengraber, M.; Müller, M.; Bognar, K.; Strong, K.; Boersma, F.; et al. Assessment of the quality of TROPOMI high-spatial-resolution NO2 data products in the Greater Toronto Area. Atmos. Meas. Tech. 2020, 13, 2131–2159. [Google Scholar] [CrossRef]
- KNMI. Sentinel 5 Precursor/TROPOMI KNMI and SRON Level 2 Input Output Data Definition. Technical Report S5PKNMI-L2-0009-SD, Koninklijk Nederlands Meteorologisch Instituut (KNMI). 2019. Available online: https://sentinel.esa.int/documents/247904/3119978/Sentinel-5P-Level-2-Input-Output-Data-Definition (accessed on 11 January 2020).
- Levelt, P.F.; Joiner, J.; Tamminen, J.; Veefkind, J.P.; Bhartia, P.K.; Zweers, D.C.S.; Duncan, B.N.; Streets, D.G.; Eskes, H.; van der, A.R.; et al. The Ozone Monitoring Instrument: Overview of 14 years in space. Atmos. Chem. Phys. 2018, 18, 5699–5745. [Google Scholar] [CrossRef] [Green Version]
- Loyola, D.; Lutz, R.; Argyrouli, A.; Spurr, R. S5P/TROPOMI ATBD Cloud Products; S5P-DLR-L2-ATBD-400I Issue 2.2; Technical Report; DLR: Cologne, Germany, 2020. [Google Scholar]
- Eskes, H.; van Geffen, J.; Folkert, B.; Kai-Uwe, E.; Arnoud, A.; Mattia, P.; Maarten, S.; Pepijn, V.J.; Loyola, D. Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Nitrogendioxide; Technical Report; S5P-KNMI-L2-0021-MA, CI-7570-PUM, issue 4.0.2; Koninklijk Nederlands Meteorologisch Instituut (KNMI): De Bilt, The Netherlands, 2021; Available online: https://sentinels.copernicus.eu/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Nitrogen-Dioxide.pdf/ad25ea4c-3a9a-3067-0d1c-aaa56eb1746b?t=1637071405160 (accessed on 5 April 2022).
- Lok, L.N.; Krotkov, N.A.; Marchenko, S.V.; Joiner, J.; Oman, L.; Vasilkov, A.; Fisher, B.; Qin, W.; Yang, E.S.; Fasnacht, Z.; et al. OMI/Aura NO2 Tropospheric, Stratospheric fff Total Columns MINDS 1-Orbit L2 Swath 13 km × 24 km. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC). 2020. Available online: https://disc.gsfc.nasa.gov/datasets/OMI_MINDS_NO2_1/summary (accessed on 5 April 2022).
- Van Geffen, J.; Boersma, K.F.; Eskesl, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 slant column retrieval: Method, stability, uncertainties and comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Souri, A.H.; González Abad, G.; Liu, X.; Chance, K. Ozone monitoring instrument (OMI) Total column water vapor version 4 validation and applications. Atmos. Meas. Tech. 2019, 12, 5183–5199. [Google Scholar] [CrossRef] [Green Version]
- Lambert, J.C.; Compernolle, S.; Eichmann, K.U.; de Graaf, M.; Hubert, D.; Keppens, A.; Kleipool, Q.; Langerock, B.; Sha, M.; Verhoelst, T.; et al. Quarterly Validation Report of the Copernicus Sentinel-5 Precursor Operational Data Products #12: April 2018–September 2021. S5P MPC Routine Operations Consolidated Validation Report Series; Version 12.01.00. 2021. Available online: http://www.tropomi.eu/sites/default/files/files/publicS5P-MPC-IASB-ROCVR-06.0.1-20200330_FINAL.pdf (accessed on 5 August 2022).
- Wang, Y.; Apituley, A.; Bais, A.; Beirle, S.; Benavent, N.; Borovski, A.; Bruchkouski, I.; Chan, K.L.; Donner, S.; Drosoglou, T.; et al. Inter-comparison of MAX-DOAS measurements of tropospheric HONO slant column densities and vertical profiles during the CINDI-2 campaign. Atmos. Meas. Tech. 2020, 13, 5087–5116. [Google Scholar] [CrossRef]
- Vandaele, A.C.; Hermans, C.; Simon, P.C.; Carleer, M.; Colin, R.; Fally, S.; Merienne, M.F.; Jenouvrier, A.; Coquart, B. Measurements of the NO2 absorption cross-section from 42,000 cm−1 to 10,000 cm−1 (238–1000 nm) at 220 K and 294 K. J. Quant. Spectrosc. Radiat. Transf. 1998, 59, 171–184. [Google Scholar] [CrossRef] [Green Version]
- Bogumil, K.; Orphal, J.; Homann, T.; Voigt, S.; Spietz, P.; Fleischmann, O.; Vogel, A.; Hartmann, M.; Kromminga, H.; Bovensmann, H.; et al. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region. J. Photochem. Photobiol. A Chem. 2003, 157, 167–184. [Google Scholar] [CrossRef]
- Hermans, C.; Vandaele, A.C.; Carleer, M.; Fally, S.; Colin, R.; Jenouvrier, A.; Coquart, B.; Mérienne, M.F. Absorption cross-sections of atmospheric constituents: NO2, O2, and H2O. Environ. Sci. Pollut. Res. 1999, 6, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wagner, T. Satellite Observations of Atmospheric Halogen Oxides; Mensch & Buch: Berlin, Germany, 1999. [Google Scholar]
- Volkamer, R.; Spietz, P.; Burrows, J.; Platt, U. High-resolution absorption cross-section of glyoxal in the UV–vis and IR spectral ranges. J. Photochem. Photobiol. A Chem. 2005, 172, 35–46. [Google Scholar] [CrossRef]
Site | Ground-Based | |
---|---|---|
(Month) | TROPOGAS | Pandora#117 |
Bologna | ||
(August) | 9. ± 19% | |
BAQUNIN—La Sapienza | ||
(September) | −24. ± 23% at 254.5 K; −19. ± 21% at 298 K |
Site | TROPOMI | OMI | ||||
---|---|---|---|---|---|---|
(Month) | TROPOGAS | Pandora#117 | SkySpec-2D | TROPOGAS | Pandora#117 | SkySpec-2D |
Time Coinc. | 60 min | 15 min | 15 min | 60 min | 15 min | 15 min |
Bologna | ||||||
(August) | −3. ± 29% | −15. ± 17% | −12. ± 36% | −22. ± 12% | ||
BAQUNIN—La Sapienza | ||||||
(September) | −34. ± 32.% | −25. ± 29.% | −73. ± 57% | −60. ± 57 % | ||
SPC | ||||||
(October–June) | 9. ± 26% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pettinari, P.; Castelli, E.; Papandrea, E.; Busetto, M.; Valeri, M.; Dinelli, B.M. Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs. Remote Sens. 2022, 14, 3881. https://doi.org/10.3390/rs14163881
Pettinari P, Castelli E, Papandrea E, Busetto M, Valeri M, Dinelli BM. Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs. Remote Sensing. 2022; 14(16):3881. https://doi.org/10.3390/rs14163881
Chicago/Turabian StylePettinari, Paolo, Elisa Castelli, Enzo Papandrea, Maurizio Busetto, Massimo Valeri, and Bianca Maria Dinelli. 2022. "Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs" Remote Sensing 14, no. 16: 3881. https://doi.org/10.3390/rs14163881
APA StylePettinari, P., Castelli, E., Papandrea, E., Busetto, M., Valeri, M., & Dinelli, B. M. (2022). Towards a New MAX-DOAS Measurement Site in the Po Valley: NO2 Total VCDs. Remote Sensing, 14(16), 3881. https://doi.org/10.3390/rs14163881